
Math 110, Spring 2019.

Homework 8 solutions.

Prob 1. Let T , S ∈ L(V ) be such that TS = ST . Show that rangeT and nullT are invariant under S.
Solution: Let us begin by showing that range(T ) is S-invariant. This entails showing that for any v ∈ V we
have that for any v ∈ V we have that S(T (v)) = T (v′) for some v′ ∈ V . Note though that S(T (v)) = T (S(v))
since S and T commute, so we can merely take v′ = S(v).

Let us now show that null(T ) is S-invariant. Again, this is equivalent to showing a more concrete
statement: if T (v) = 0 then T (S(v)) = 0. But, note T (S(v)) = S(T (v)) = S(0) = 0 where the first step used
the commtuativity of T and S.



Prob 2. Let S, T ∈ L(V ) and suppose S is invertible. Prove that, for any polynomial p ∈ P(IF),

p(STS−1) = S p(T )S−1.

Solution: Let us note since polynomials are comprised of sums of terms of the form anx
n it suffices to show

the following three things:

1. If A and B are operators then S(A+B)S−1 = SAS−1 +BSB−1.

2. If A is an operator and λ is a scalar then λSAS−1 = S(λA)S−1.

3. If A is an operator and n ∈ N then (SAS−1)n = SAnS−1.

The first property follows immediately from the distributivity property of function composition and addition.
The second follows from the linearity of S. To see the third we proceed by induction. For n = 1 this is clear.
Assume the result is true for n. Then,

(SAS−1)n+1 = (SAS−1)(SAS−1)n

= (SAS−1)(SAnS−1

= SAS−1SAnS−1

= SAAnS−1

= SAn+1S−1

(1)

from where the conclusion follows.
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Prob 3. Let v be an eigenvector of T ∈ L(V ) with eigenvalue λ. Show that

(T 3 + 3T 2 − 4T + I)v = (λ3 + 3λ2 − 4λ+ 1)v.

How does this observation generalize?
Solution: Let us prove the following generalization, since it requires no extra work. Namely, let p(x) be a
polynomial. Then, for v, T , and λ as in the problem statement the equality p(T )v = p(λ)v holds. Again,
using the same reasoning in the previous problem it suffices to show that aTnv = aλnv since ever polynomial
is expressed as a sum of such terms. Again, to be rigorous, we proceed by induction. For n = 1 the assertion
is clear. If the result is true for n then

aTn+1v = aT (Tn(v))

= T (aTn(v))

= T (λnv)

= λnT (v)

= λnλv

= λn+1

(2)

from where the conclusion follows.
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Prob 4. Let V be a finite-dimensional real vector space and let T ∈ L(V ). Define f : IR→ IR by

f(λ) := dim range (T − λI).

Which condition on T is equivalent to f being a continuous function?
Solution:

Remark: We should assume that V 6= 0. If V is the zero space then there is only one operator T (the
zero map) and the function f is continuous. But, we discuss eigenvalues below, and eigenvalues on the zero
space are weird (e.g. if we require the existence of a non-zero eigenvector for an eigenvalue, then the claim
that T an operator on a finite-dimensional C-space V has an eigenvalue is only true if V 6= 0). So, we assume
that V 6= 0 in the following.

Let us begin by noting that f ’s range lies inside of {0, 1, . . . ,dimV }. Indeed, for any λ since T −λI is an
operator on V we have that range(T −λI) is a subspace of V , and so has dimension in the claimed range. We
claim that this observation shows that f is continuous if and only if f is constant. Indeed, if f is constant it’s
certainly continuous. Conversely, suppose that f is continuous. If λ0, λ1 ∈ IR are such that f(λ0) 6= f(λ1)
(assume without loss of generalith that f(λ0) < f(λ1) then by the Intermediate Value Theorem we have
that f takes all values in [f(λ0), f(λ1)]. But, since between any two integers there is a non-integer we see
that this implies that f takes non-integer values, which is preposterous. Thus, f is necessarily constant.

We now seek conditions on T that guarantee that f is constant. Let λ0 ∈ R be a non-eigenvalue of
T . Note that such a λ0 exists since T has only finitely many eigenvalues and R contains infinitely many
elements. Note then that, by definition, Null(T − λ0I) = 0. By the Rank-Nullity theorem this implies that

f(λ0) = dim range(T − λ0I) = dimV (3)

Thus, if f is constant we see that f must be the constant function f(λ) = dimV . Note though that
f(λ) < dimV if and only if Null(T − λI) 6= 0 if and only if λ is a (real) eigenvalue of T . In particular, we
see that f is constant if and only if it has no (real) eigenvalues.

EDIT EDIT: The below is not necessary. This is already proved in your book in either 5.9 or 5.13 depending
on your edition.
EDIT: To see the claim above that T has only finitely many eigenvalues, we can proceed as follows. Let
λ1, . . . λk be distinct eigenvalues of T and let u1, . . . , uk be associated eigenvectors. We claim that u1, . . . , uk
are independent. To see this, suppose first that k = 2. Then, if u1 and u2 are dependent we’d have that
u1 = αu2 for some α 6= 0. Note then that T (u1) = λ1u1 but also T (u1) = T (αu2) = αλ2u2 = λ2u1. Since
λ1 6= λ2 this is a contradiciton. For general k we reduce to the k = 2 case. Indeed, suppose that

u1 = α2u2 + · · ·+ αkuk (4)

evidently with at lest one of the αi 6= 0. Applying T to both sides gives

λ1u1 = λ2α2u2 + · · ·+ λkαkuk (5)

Multiplying (4) by λ1 and subtracting it form (5) gives

0 = α2(λ2 − λ1)u2 + · · ·+ αk(λk − λ1)uk (6)

Note that since λ1 6= λi for any i > 1 we have created a dependence on u2, . . . , uk. Continuing this process
will eventually give you a dependence on uk−1, uk which is impossible. Note then that implies that T can
have at most dimV distinct eigenvalues, since otherwise we could produce a list of independent vectors in
V of size larger that dimV which is impossible.
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Prob 5. Suppose V is a finite-dimensional complex vector space, T ∈ L(V ) is diagonalizable, and all
eigenvalues of T are strictly below 1 in absolute value. Given ϕ ∈ V ′ and v ∈ V , what is limn→∞ ϕ(Tnv)?
Solution: Since T is diagonalizable we can fix an eigenbasis {v1, . . . , vn} of V and let λi be the eigenvalue
associated to vi (note that it’s possible that λi = λj for i 6= j, but this doesn’t matter). Note then that if
v = α1v1 + · · ·+ αnvn ∈ V then

Tm(v) = Tm

(
m∑
i=1

αivi

)

=

n∑
i=1

αiT
m(vi)

=

n∑
i=1

αiλ
m
i

(7)

where we have used the claim that Tm(vi) = λmvi which follows form Problem 3. Note then that

ϕ(Tm(v)) = ϕ

(
n∑

i=1

αiλ
m
i

)

=

n∑
i=1

αiλ
m
i ϕ(vi)

(8)

So, to prove that lim
m→∞

ϕ(Tm(v)) = 0 we proceed as follows. Recall from basic calculus/analysis that if (am)

and (bm) are sequences of complex numbers such that lim
m→∞

am and lim
m→∞

bm exists then, for any scalars

α, β ∈ C we have that lim
m→∞

(αam + βbm) exists and, moreover, that

lim
m→∞

(αam + βbm) = α( lim
m→∞

am) + β( lim
m→∞

bm) (9)

From this, it’s clear from (8) that to show lim
m→∞

ϕ(Tm(v)) = 0 it suffices to show that for each i we have that

lim
m→∞

λmi = 0 (note that ϕ(vi) is some fixed scalar!). From basic calculus/analysis it’s also well-known that

if (am) is a sequence of complex numbers then lim
m→∞

am = 0 if and only if lim
m→∞

|am| = 0. Thus, it suffices

to justify why lim
m→∞

|λmi | = 0. But, |λmi | = |λi|m. Since |λi| < 1 the limit lim
m→∞

|λi|m = 0 clearly holds.
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