Daniel Suryakusuma

SID: 24756460
Math 110, Spring 2019.
Homework 9, due Apr 7.

Prob 1. Let V be a complex vector space and let $T \in \mathcal{L}(V)$ satisfy $(T-2 I)(T+4 I)(T-7 I)=0$. What possible values can $\lambda \in \mathbb{C}$ take for it to be an eigenvalue of T ?

Solution. Given $(T-2 I)(T+4 I)(T-7 I)=0$, applying each side to ANY $v \in V$, we have

$$
[(T-2 I)(T+4 I)(T-7 I)](v)=0(v)
$$

This gives by definition of eigenvalue that there exist precisely three unique eigenvectors of T corresponding to three different eigenvalues: $v_{1} \in \operatorname{ker}[T-2 I], v_{2} \in \operatorname{ker}[T+4 I], v_{3} \in \operatorname{ker}[T-7 I]$. That is, for our given T,

$$
T v_{1}=2 v_{1}, T v_{2}=-4 v_{2}, T v_{3}=7 v_{3}
$$

From our given information, we can have $\lambda \in \mathbb{C}$ take on values $\{-4,2,7\}$ to be an eigenvalue of T.

Prob 2. Suppose V is a complex vector space and $T \in \mathcal{L}(V)$ has no eigenvalues.
(a) Prove that every subspace of V invariant under T is either zero or infinite-dimensional.
(b) Give an example of such an operator T on $V:=\mathbb{C}^{\infty}$ with a T-invariant nonzero proper subspace.

Solution. (a) Axler (5.21) states "every operator on a finite-dimensional, nonzero, complex vector space has an eigenvalue," or equivalently:

$$
(T \in \mathcal{L}(V) \text { with } \operatorname{dim} V=n, \mathbb{F}=\mathbb{C}) \Longrightarrow(T \text { has an eigenvalues })
$$

Consider the contrapositive of this statement.

$$
(T \text { has no eigenvalues }) \Longrightarrow \neg(T \in \mathcal{L}(V) \text { with } \operatorname{dim} V=n>0, \mathbb{F}=\mathbb{C})
$$

Hence given T has no eigenvalues and $\mathbb{F}=\mathbb{C}$, it must be so that $\operatorname{dim} V \neq n>0$. This is precisely true when V infinite-dimensional or zero. Then it follows that every subspace of V invariant under T (has an eigenvalue) is either zero or infinite-dimensional (to be consistent with the above).
(b) We are asked to provide an example of a linear operator T (that has no eigenvalues) where a nonzero proper subspace is T-invariant. A canonical example of such an operator is the "right-shift" operator defined $T \in \mathcal{L}\left(\mathbb{C}^{\infty}\right)$ and $z=\left(z_{1}, z_{2}, z_{3}, \ldots\right) \in \mathbb{C}^{\infty}:$

$$
\left(z_{1}, z_{2}, z_{3}, \ldots\right) \stackrel{T}{\longmapsto}\left(0, z_{1}, z_{2}, z_{3}, \ldots\right)
$$

Consider the subset $U \subset \mathbb{C}^{\infty}$ of tuples with first element 0 . In other words, $U:=\left\{z \in \mathbb{C}^{\infty} \mid z=\right.$ $\left.\left(0, z_{2}, z_{3}, z_{3}, \ldots\right), z_{i} \in \mathbb{C}\right\}$. Surely U is a nonzero set (for example, $\left.(0,1,0, \ldots) \in U\right)$. Also, for example, $(1,0,0, \ldots) \notin U$, so $U \neq \mathbb{C}^{\infty}$, and U is thus a proper subset. It is a subspace following from linear properties of tuples forming a vector space. Then for all $u \in U$, we have $T(u) \in U$, so subspace U is invariant under T.

However, this operator T has no eigenvalue. To see this, suppose there exists some eigenvalue $\lambda \in \mathbb{C}$ and $z \neq 0$ with $T(z)=\lambda z$. If $\lambda=0$, then $T(z)=0 \Longrightarrow 0=z_{1}, z_{1}=z_{2}, \cdots \Longrightarrow z=0$, a contradiction to requirement for eigenvalue. If $\lambda \neq 0$, then consider that $T(z)=\lambda z=\left(\lambda z_{1}, \lambda z_{2}, \lambda z_{3}, \ldots\right)=\left(0, z_{1}, z_{2}, z_{3}, \ldots\right)$. But $\lambda z_{1}=0$ with $\lambda \neq 0$ means that $z_{1}=0=\lambda z_{2} \Longrightarrow z_{2}=0 \Rightarrow z_{3}=0 \cdots \Longrightarrow z=0$, again a contradiction.

Prob 3. Let V be a finite-dimensional complex vector space. Prove that $T \in \mathcal{L}(V)$ is diagonalizable if and only if, for all $\lambda \in \mathbb{C}$,

$$
\text { null }(T-\lambda I) \oplus \operatorname{range}(T-\lambda I)=V
$$

Solution. We prove the forward (\Longrightarrow) direction first.
From T diagonalizable, all non-diagonal entries are zero, so $T-\lambda I$ is diagonalizable for all $\lambda \in \mathbb{C}$. If we have $(T-\lambda I) \in \mathcal{L}(V)$ diagonalizable, then we must have a basis of eigenvectors for finite n-dimensional V. $T-\lambda I$ diagonalizable gives $V=U_{1} \oplus U_{2} \oplus \cdots \oplus U_{n}$, where each $U_{i}(i \in\{1,2, \ldots, n\})$ is a 1-dimensional subspace invariant under $T-\lambda I$. That is, for all $u \in U_{i},[T-\lambda I](u) \in U_{i}$, and all U_{i} fall into either the null space or the range of $T-\lambda I$ (and not both, with zero being the only overlap). Hence $\operatorname{ker}[T-\lambda I] \oplus \operatorname{Im}[T-\lambda]=V$ is a direct sum, and we have this equality (span) from $V=\sum_{i} U_{i}$.

Now we prove the backwards (\Longleftarrow) statement. Suppose we have $\operatorname{ker}[T-\lambda I] \oplus \operatorname{Im}[T-\lambda I]=V$ for all $\lambda \in \mathbb{C}$. For this to be a direct sum (by Axler's definition), $\operatorname{ker}[T-\lambda I]$ and $\operatorname{Im}[T-\lambda I]$ must both be proper subsets of V. Hence $\operatorname{ker}[T-\lambda I] \neq 0$ so $T-\lambda I$ not injective, and $\operatorname{Im}[T-\lambda I] \neq V$ so $T-\lambda I$ not surjective. This is equivalent to T being diagonalizable.

Prob 4. Determine whether or not the function taking the pair $\left(\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right)\right) \in \mathbb{R}^{3} \times \mathbb{R}^{3}$ to $x_{1} y_{2}+2 x_{2} y_{3}+3 x_{3} y_{1}$ is an inner product.

Solution. Consider $u=(1,2,3)$ and $v=(-1,-2,-3)$. Then $u, v \in \mathbb{R}^{3}$ and $\langle u, v\rangle=1(1)(-2)+2(2)(-3)+$ $3(3)(-1)=-2-12-9<0$. But the definition of an inner product requires that an inner product be strictly nonnegative, so this mapping $\left(\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right)\right) \mapsto x_{1} y_{2}+2 x_{2} y_{3}+3 x_{3} y_{1}$ does NOT give an inner product.

Prob 5. Use the dot product to show that the diagonals of a rhombus are perpendicular to each other.
Solution. Recall that a rhombus is defined as a parallelogram with equal sides. Consider the parallelogram created by two vectors $u, v \in \mathbb{R}^{2}$ with diagonals $u-v$ and $u+v$ (rhombus by setting $\left.|u|=|v|\right)$. If our dot product $(u-v) \cdot(u+v)=0$, by definition of orthogonal we have their diagonals are perpendicular.

$$
\begin{aligned}
(u-v) \cdot(u+v) & =u \cdot(u+v)-v \cdot(u+v)\{\text { left additivity of inner product }\} \\
& =\overline{(u+v) \cdot u}-\overline{(u+v) \cdot v}\{\text { conjugate symmetry }\} \\
& =(u+v) \cdot u-(u+v) \cdot v\{\text { no imaginary part, } \mathbb{F}=\mathbb{R}\} \\
& =[u \cdot u+v \cdot u]-[u \cdot v+v \cdot v]\{\text { left additivity of inner product }\} \\
& =[u \cdot u-v \cdot v]+[v \cdot u-u \cdot v]\{\text { associativity of addition }\} \\
& =0+[v \cdot u-u \cdot v]\left\{|u|=|v| \Longrightarrow|u|^{2}=u \cdot u=v \cdot v=|v|^{2}\right\} \\
& =0\{v \cdot u=\overline{u \cdot v}=u \cdot v\}
\end{aligned}
$$

Hence the diagonals of a rhombus are orthogonal (perpendicular).
This proof could've been one line if we cited that the dot product distributes over additivity.

Prob 6. Prove that, for all complex numbers $a_{j}, b_{j}, j=1, \ldots, n$, the following inequality holds:

$$
\left|\sum_{j=1}^{n} a_{j} \overline{b_{j}}\right|^{2} \leq\left(\sum_{j=1}^{n} j\left|a_{j}\right|^{2}\right)\left(\sum_{j=1}^{n} \frac{\left|b_{j}\right|^{2}}{j}\right)
$$

Solution. Consider the set U of natural numbers that satisfy the given inequality. For $j=1$ we have: $\left|a_{1} \overline{b_{j}}\right|^{2} \leq 1\left|a_{1}\right|^{2} \frac{1}{1}\left|b_{1}\right|^{2}$ which is true for all $a_{j}, b_{j} \in \mathbb{C}$, so $1 \in U$. Assume we have $k \in U$ such that $\left|\sum_{j=1}^{k} a_{j} \overline{b_{j}}\right|^{2} \leq\left(\sum_{j=1}^{k} j\left|a_{j}\right|^{2}\right)\left(\sum_{j=1}^{k} \frac{\left|b_{j}\right|^{2}}{j}\right)$.

Then consider $k+1$:

$$
\begin{aligned}
\left|\sum_{j=1}^{k+1} a_{j} \overline{b_{j}}\right|^{2} & =\left|\sum_{j=1}^{k} a_{j} \overline{b_{j}}+a_{k+1} \overline{b_{k+1}}\right|^{2} \leq\left(\left|\sum_{j=1}^{k} a_{j} \overline{b_{j}}\right|+\left|a_{k+1} \overline{b_{k+1}}\right|\right)^{2} \\
& =\left|\sum_{j=1}^{k} a_{j} \overline{b_{j}}\right|^{2}+\left|a_{k+1} \overline{b_{k+1}}\right|^{2}+2\left|a_{k+1} \overline{b_{k+1}}\right| \sum_{j=1}^{k} a_{j} \overline{b_{j}} \mid \\
& \leq\left(\sum_{j=1}^{k} j\left|a_{j}\right|^{2}\right)\left(\sum_{j=1}^{k} \frac{1}{j}\left|b_{j}\right|^{2}\right)+\left|a_{k+1} \overline{b_{k+1}}\right|^{2}+2\left|a_{k+1} \overline{b_{k+1}}\right|\left|\sum_{j=1}^{k} a_{j} \overline{b_{j}}\right| \\
& \leq\left(\sum_{j=1}^{k} j\left|a_{j}\right|^{2}\right)\left(\sum_{j=1}^{k} \frac{1}{j}\left|b_{j}\right|^{2}\right)+\left|a_{k+1} \overline{b_{k+1}}\right|^{2}+2\left|\sum_{j=1}^{k}\right| a_{k+1}\left|a_{j} \overline{b_{j}}\right| \overline{b_{k+1}}| | \\
& \leq \sum_{j=1}^{k} j\left|a_{j}\right|^{2} \sum_{j=1}^{k} \frac{1}{j}\left|b_{j}\right|^{2}+\left|a_{k+1} \overline{b_{k+1}}\right|^{2}+\sum_{j=1}^{k} \frac{j}{k+1}\left|a_{j}\right|^{2}\left|b_{k+1}\right|^{2}+\sum_{j=1}^{k} \frac{k+1}{j}\left|a_{k+1}\right|^{2}\left|b_{j}\right|^{2} \\
& =\sum_{j=1}^{k} j\left|a_{j}\right|^{2} \sum_{j=1}^{k} \frac{1}{j}\left|b_{j}\right|^{2}+\left|a_{k+1} \overline{b_{k+1}}\right|^{2}+\left(\sum_{j=1}^{k} j\left|a_{j}\right|^{2}\right)\left(\frac{1}{k+1}\right)\left|b_{k+1}\right|^{2}+\left(\sum_{j=1}^{k} \frac{1}{j}\left|b_{j}\right|^{2}\right)(k+1)\left|a_{k+1}\right|^{2} \\
& =\left[\sum_{j=1}^{k} j\left|a_{j}\right|^{2}+(k+1)\left|a_{k+1}\right|^{2}\right]\left[\sum_{j=1}^{k} \frac{1}{j}\left|b_{j}\right|^{2}+\frac{1}{k+1}\left|b_{k+1}\right|^{2}\right] \\
& =\left(\sum_{j=1}^{k+1} j\left|a_{j}\right|^{2}\right)
\end{aligned}
$$

which is our desired inequality replaced with $k+1$. So $k+1 \in U$, and by induction, this gives $U=\{1,2,3, \ldots\}$ and we are done.

Define the following: $a:=\left(a_{1}, a_{2}, \ldots, a_{n}\right), b:=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ with $a, b \in \mathbb{C}^{n}$. Then our desired inequality is equivalently:

$$
\langle a, b\rangle^{2} \leq \sum_{j=1}^{n} j a_{j} \overline{a_{j}} \sum_{j=1}^{n} \frac{1}{j} b_{j} \overline{b_{j}}
$$

Cauchy-Schwarz Inequality (6.15 Axler) gives $\langle u, v\rangle \leq|u||v|$. So we have LHS $=\langle a, b\rangle^{2} \leq|a|^{2}|b|^{2}$.
On the right-hand-side, by the trivial inequality we have $a_{j} \overline{a_{j}}=\left|a_{j}\right|^{2} \geq 0$ and $b_{j} \overline{b_{j}}=\left|b_{j}\right|^{2} \geq 0$, so we can provide a lower bound for the two summands:

$$
\sum_{j=1}^{n} j a_{j} \overline{a_{j}} \geq \sum_{j=1}^{n} a_{j} \overline{a_{j}}=\langle a, a\rangle=|a|^{2} \quad, \quad \sum_{j=1}^{n} \frac{1}{j} b_{j} \overline{b_{j}} \geq \frac{1}{n} \sum_{j=1}^{n} b_{j} \overline{b_{j}}=\frac{1}{n}\langle b, b\rangle=\frac{1}{n}|b|^{2}
$$

From these we have:

$$
\left|\sum_{j=1}^{n} a_{j} \overline{b_{j}}\right|^{2}=\langle a, b\rangle^{2} \leq|a|^{2}|b|^{2}
$$

