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Homework 9, due Apr 7.

Prob 1. Let V be a complex vector space and let T € L£(V) satisty (T — 2I)(T + 41)(T — 7I) = 0. What
possible values can A € C take for it to be an eigenvalue of 17

Solution. Given (T — 2I)(T + 4I)(T — 7I) = 0, applying each side to ANY v € V, we have
(T —20)(T 4+ 41)(T — 7I)](v) = 0(v).

This gives by definition of eigenvalue that there exist precisely three unique eigenvectors of T" correspond-
ing to three different eigenvalues: vy € ker[T' — 2I], vy € ker[T + 4], vs € ker[T' — 7I]. That is, for our given
T

)

TUl = 21}1 y TUQ = —41}2 y TU3 = 71}3.

From our given information, we can have A € C take on values {—4,2,7} to be an eigenvalue of T'.



Prob 2. Suppose V is a complex vector space and T € £(V') has no eigenvalues.
(a) Prove that every subspace of V invariant under T is either zero or infinite-dimensional.
(b) Give an example of such an operator T on V :=C* with a T-invariant nonzero proper subspace.

Solution. (a) Axler (5.21) states “every operator on a finite-dimensional, nonzero, complex vector space
has an eigenvalue,” or equivalently:

(T € L(V) with dimV =n,IF = C) = (T has an eigenvalues)
Consider the contrapositive of this statement.
(T has no eigenvalues) = (T € L(V) with dimV =n > 0,F = C)

Hence given T has no eigenvalues and IF = C, it must be so that dim V' # n > 0. This is precisely true
when V infinite-dimensional or zero. Then it follows that every subspace of V invariant under T (has an
eigenvalue) is either zero or infinite-dimensional (to be consistent with the above).

(b) We are asked to provide an example of a linear operator T' (that has no eigenvalues) where a nonzero
proper subspace is T-invariant. A canonical example of such an operator is the “right-shift” operator defined
T e L(C™) and z = (21, 22,23,...) € C*:

T
(21,2’2,23,...) — (0,21722,2’3,...)

Consider the subset U C C* of tuples with first element 0. In other words, U:={z € C*|z =
(0,29,23,23,...),2; € C}. Surely U is a nonzero set (for example, (0,1,0,...) € U). Also, for exam-
ple, (1,0,0,...) ¢ U, so U # C*, and U is thus a proper subset. It is a subspace following from linear
properties of tuples forming a vector space. Then for all u € U, we have T'(u) € U, so subspace U is invariant
under 7.

However, this operator T has no eigenvalue. To see this, suppose there exists some eigenvalue A € C and
z #0with T(z) = Az. A =0, then T(z) =0 = 0= 21,21 = 23,--- = 2z = 0, a contradiction to
requirement for eigenvalue. If A # 0, then consider that T'(z) = Az = (Az1, Aze, Azs,...) = (0,21, 29, 23, ... ).
But Az; = 0 with A # 0 means that 21 =0 =Xz, = 20 =0 = 23 =0--- = 2z = 0, again a
contradiction.

O



Prob 3. Let V be a finite-dimensional complex vector space. Prove that T' € L(V) is diagonalizable if and
only if, for all A € C,
null (T — M) @ range (T — A\I) = V.

Solution. We prove the forward ( =) direction first.

From T diagonalizable, all non-diagonal entries are zero, so T'— Al is diagonalizable for all A € C. If we
have (T — AI) € L(V) diagonalizable, then we must have a basis of eigenvectors for finite n-dimensional V.
T — X\ diagonalizable gives V =U; ®Us @ - - - & Uy, where each U; (i € {1,2,...,n}) is a 1-dimensional sub-
space invariant under T'—AI. That is, for all u € U;, [T —AI](u) € U;, and all U; fall into either the null space
or the range of T'— AI (and not both, with zero being the only overlap). Hence ker[T' — M| @ Im[T —\| =V
is a direct sum, and we have this equality (span) from V =" U;.

Now we prove the backwards ( <= ) statement. Suppose we have ker[T'— AI] ® Im[T — AI| = V for all
A € C. For this to be a direct sum (by Axler’s definition), ker[T' — AI| and Im[T" — AI] must both be proper
subsets of V. Hence ker[T' — AI] # 0 so T — Al not injective, and Im[T" — AI] # V so T — AI not surjective.

This is equivalent to T being diagonalizable.
O



Prob 4. Determine whether or not the function taking the pair ((x1,z2,23), (y1,¥2,y3)) € IR* x R? to
T1Y2 + 222ys + 3x3y; is an inner product.

Solution. Consider u = (1,2,3) and v = (=1, =2, —3). Then u,v € R® and (u,v) = 1(1)(—2)+2(2)(-3)+
3(3)(—1) = =2 — 12 — 9 < 0. But the definition of an inner product requires that an inner product be
strictly nonnegative, so this mapping ((x1,x2,x3), (y1,¥2,¥3)) — T1y2 + 222y3 + 3x3y; does NOT give an

inner product.
O



Prob 5. Use the dot product to show that the diagonals of a rhombus are perpendicular to each other.

Solution. Recall that a rhombus is defined as a parallelogram with equal sides. Consider the parallelogram
created by two vectors u,v € IR? with diagonals v — v and u + v (rhombus by setting |u| = |v|). If our dot
product (u — v) - (u+ v) = 0, by definition of orthogonal we have their diagonals are perpendicular.

(u—v)-(u+v)=u-(u+v)—v-(u+v) {left additivity of inner product}

= (u+v)-u— (u+v)-v {conjugate symmetry}

= (u+v)-u— (u+v)-v {no imaginary part, IF = IR}
=[u-u+v-ul —[u-v+v-v] {left additivity of inner product}
=[u-u—v-v]+[v-u—u-v] {associativity of addition}
=0+w-u—u-v]{ju=h = uf=u-u=v-v=|v?}

=0{v-u=uw-v=u-v}
Hence the diagonals of a rhombus are orthogonal (perpendicular). O

This proof could’ve been one line if we cited that the dot product distributes over additivity.



Prob 6. Prove that, for all complex numbers a;, b;, j = 1,...,n, the following inequality holds:
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Solution. Consider the set U of natural numbers that satisfy the given inequality. For j = 1 we have:
la1b;|* < 1|a1|21\b1\2 which is true for all a;,b; € C, so 1 € U. Assume we have K € U such that
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which is our desired inequality replaced with k+1. So k+1 € U, and by induction, this gives U = {1,2,3,...}
and we are done.



Define the following: a:=(a1,as,...,a,),b:=(b1,ba,...,b,) with a,b € C". Then our desired inequality

is equivalently:
) n o n 1
(a,0)* <Y jaja; > =bsb;
=1 =17

Cauchy-Schwarz Inequality (6.15 Axler) gives (u,v) < |ul|v|. So we have LHS = (a,b)? < |a|?|b|>.
On the right-hand-side, by the trivial inequality we have a;a; = |a;|* > 0 and b;b; = |b;|* > 0, so we can
provide a lower bound for the two summands:
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From these we have:
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