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Math 110, Spring 2019.

Homework 9, due Apr 7.

Prob 1. Let V be a complex vector space and let T ∈ L(V ) satisfy (T − 2I)(T + 4I)(T − 7I) = 0. What
possible values can λ ∈ C take for it to be an eigenvalue of T?

Solution. Given (T − 2I)(T + 4I)(T − 7I) = 0, applying each side to ANY v ∈ V , we have

[(T − 2I)(T + 4I)(T − 7I)](v) = 0(v).

This gives by definition of eigenvalue that there exist precisely three unique eigenvectors of T correspond-
ing to three different eigenvalues: v1 ∈ ker[T − 2I], v2 ∈ ker[T + 4I], v3 ∈ ker[T − 7I]. That is, for our given
T ,

Tv1 = 2v1 , T v2 = −4v2 , T v3 = 7v3.

From our given information, we can have λ ∈ C take on values {−4, 2, 7} to be an eigenvalue of T .
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Prob 2. Suppose V is a complex vector space and T ∈ L(V ) has no eigenvalues.
(a) Prove that every subspace of V invariant under T is either zero or infinite-dimensional.
(b) Give an example of such an operator T on V := C∞ with a T -invariant nonzero proper subspace.

Solution. (a) Axler (5.21) states “every operator on a finite-dimensional, nonzero, complex vector space
has an eigenvalue,” or equivalently:

(T ∈ L(V ) with dimV = n, IF = C) =⇒ (T has an eigenvalues)

Consider the contrapositive of this statement.

(T has no eigenvalues) =⇒ ¬(T ∈ L(V ) with dimV = n > 0, IF = C)

Hence given T has no eigenvalues and IF = C, it must be so that dimV 6= n > 0. This is precisely true
when V infinite-dimensional or zero. Then it follows that every subspace of V invariant under T (has an
eigenvalue) is either zero or infinite-dimensional (to be consistent with the above).

(b) We are asked to provide an example of a linear operator T (that has no eigenvalues) where a nonzero
proper subspace is T -invariant. A canonical example of such an operator is the “right-shift” operator defined
T ∈ L(C∞) and z = (z1, z2, z3, . . . ) ∈ C∞:

(z1, z2, z3, . . . )
T7−→ (0, z1, z2, z3, . . . )

Consider the subset U ⊂ C∞ of tuples with first element 0. In other words, U :={z ∈ C∞|z =
(0, z2, z3, z3, . . . ), zi ∈ C}. Surely U is a nonzero set (for example, (0, 1, 0, . . . ) ∈ U). Also, for exam-
ple, (1, 0, 0, . . . ) /∈ U , so U 6= C∞, and U is thus a proper subset. It is a subspace following from linear
properties of tuples forming a vector space. Then for all u ∈ U , we have T (u) ∈ U , so subspace U is invariant
under T .

However, this operator T has no eigenvalue. To see this, suppose there exists some eigenvalue λ ∈ C and
z 6= 0 with T (z) = λz. If λ = 0, then T (z) = 0 =⇒ 0 = z1, z1 = z2, · · · =⇒ z = 0, a contradiction to
requirement for eigenvalue. If λ 6= 0, then consider that T (z) = λz = (λz1, λz2, λz3, . . . ) = (0, z1, z2, z3, . . . ).
But λz1 = 0 with λ 6= 0 means that z1 = 0 = λz2 =⇒ z2 = 0 =⇒ z3 = 0 · · · =⇒ z = 0, again a
contradiction.
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Prob 3. Let V be a finite-dimensional complex vector space. Prove that T ∈ L(V ) is diagonalizable if and
only if, for all λ ∈ C,

null (T − λI)⊕ range (T − λI) = V.

Solution. We prove the forward ( =⇒ ) direction first.
From T diagonalizable, all non-diagonal entries are zero, so T − λI is diagonalizable for all λ ∈ C. If we

have (T − λI) ∈ L(V ) diagonalizable, then we must have a basis of eigenvectors for finite n-dimensional V .
T −λI diagonalizable gives V = U1⊕U2⊕· · ·⊕Un, where each Ui (i ∈ {1, 2, . . . , n}) is a 1-dimensional sub-
space invariant under T−λI. That is, for all u ∈ Ui, [T−λI](u) ∈ Ui, and all Ui fall into either the null space
or the range of T −λI (and not both, with zero being the only overlap). Hence ker[T −λI]⊕ Im[T −λ] = V
is a direct sum, and we have this equality (span) from V =

∑
i Ui.

Now we prove the backwards ( ⇐= ) statement. Suppose we have ker[T − λI]⊕ Im[T − λI] = V for all
λ ∈ C. For this to be a direct sum (by Axler’s definition), ker[T − λI] and Im[T − λI] must both be proper
subsets of V . Hence ker[T − λI] 6= 0 so T − λI not injective, and Im[T − λI] 6= V so T − λI not surjective.
This is equivalent to T being diagonalizable.
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Prob 4. Determine whether or not the function taking the pair ((x1, x2, x3), (y1, y2, y3)) ∈ IR3 × IR3 to
x1y2 + 2x2y3 + 3x3y1 is an inner product.

Solution. Consider u = (1, 2, 3) and v = (−1,−2,−3). Then u, v ∈ IR3 and 〈u, v〉 = 1(1)(−2)+2(2)(−3)+
3(3)(−1) = −2 − 12 − 9 < 0. But the definition of an inner product requires that an inner product be
strictly nonnegative, so this mapping ((x1, x2, x3), (y1, y2, y3)) 7→ x1y2 + 2x2y3 + 3x3y1 does NOT give an
inner product.
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Prob 5. Use the dot product to show that the diagonals of a rhombus are perpendicular to each other.

Solution. Recall that a rhombus is defined as a parallelogram with equal sides. Consider the parallelogram
created by two vectors u, v ∈ IR2 with diagonals u− v and u+ v (rhombus by setting |u| = |v|). If our dot
product (u− v) · (u+ v) = 0, by definition of orthogonal we have their diagonals are perpendicular.

(u− v) · (u+ v) = u · (u+ v)− v · (u+ v) {left additivity of inner product}

= (u+ v) · u− (u+ v) · v {conjugate symmetry}
= (u+ v) · u− (u+ v) · v {no imaginary part, IF = IR}
= [u · u+ v · u]− [u · v + v · v] {left additivity of inner product}
= [u · u− v · v] + [v · u− u · v] {associativity of addition}
= 0 + [v · u− u · v] {|u| = |v| =⇒ |u|2 = u · u = v · v = |v|2}
= 0 {v · u = u · v = u · v}

Hence the diagonals of a rhombus are orthogonal (perpendicular).

This proof could’ve been one line if we cited that the dot product distributes over additivity.
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Prob 6. Prove that, for all complex numbers aj , bj , j = 1, . . . , n, the following inequality holds:

∣∣∣ n∑
j=1

ajbj

∣∣∣2 ≤
 n∑

j=1

j |aj |2
 n∑

j=1

|bj |2

j

 .

Solution. Consider the set U of natural numbers that satisfy the given inequality. For j = 1 we have:
|a1bj |2 ≤ 1|a1|2 1

1 |b1|
2 which is true for all aj , bj ∈ C, so 1 ∈ U . Assume we have k ∈ U such that∣∣∣∑k

j=1 ajbj

∣∣∣2 ≤ (∑k
j=1 j |aj |2

)(∑k
j=1

|bj |2
j

)
.

Then consider k + 1:

∣∣∣ k+1∑
j=1

ajbj

∣∣∣2 =
∣∣∣ k∑
j=1

ajbj + ak+1bk+1

∣∣∣2 ≤
∣∣ k∑

j=1

ajbj
∣∣+
∣∣ak+1bk+1

∣∣2

=
∣∣ k∑
j=1

ajbj
∣∣2 + |ak+1bk+1|2 + 2|ak+1bk+1|

∣∣∣ k∑
j=1

ajbj

∣∣∣
≤

 k∑
j=1

j|aj |2
 k∑

j=1

1

j
|bj |2

+ |ak+1bk+1|2 + 2|ak+1bk+1|
∣∣ k∑
j=1

ajbj
∣∣

≤

 k∑
j=1

j|aj |2
 k∑

j=1

1

j
|bj |2

+ |ak+1bk+1|2 + 2
∣∣ k∑
j=1

|ak+1|ajbj |bk+1|
∣∣

≤
k∑

j=1

j|aj |2
k∑

j=1

1

j
|bj |2 + |ak+1bk+1|2 +

k∑
j=1

j

k + 1
|aj |2|bk+1|2 +

k∑
j=1

k + 1

j
|ak+1|2|bj |2

=

k∑
j=1

j|aj |2
k∑

j=1

1

j
|bj |2 + |ak+1bk+1|2 +

 k∑
j=1

j|aj |2
( 1

k + 1

)
|bk+1|2 +

 k∑
j=1

1

j
|bj |2

 (k + 1)|ak+1|2

=

 k∑
j=1

j|aj |2 + (k + 1)|ak+1|2
 k∑

j=1

1

j
|bj |2 +

1

k + 1
|bk+1|2


=

k+1∑
j=1

j |aj |2
k+1∑

j=1

|bj |2

j

 ,

which is our desired inequality replaced with k+1. So k+1 ∈ U , and by induction, this gives U = {1, 2, 3, . . . }
and we are done.
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Define the following: a :=(a1, a2, . . . , an), b :=(b1, b2, . . . , bn) with a, b ∈ Cn. Then our desired inequality
is equivalently:

〈a, b〉2 ≤
n∑

j=1

jajaj

n∑
j=1

1

j
bjbj

Cauchy-Schwarz Inequality (6.15 Axler) gives 〈u, v〉 ≤ |u||v|. So we have LHS = 〈a, b〉2 ≤ |a|2|b|2.
On the right-hand-side, by the trivial inequality we have ajaj = |aj |2 ≥ 0 and bjbj = |bj |2 ≥ 0, so we can

provide a lower bound for the two summands:

n∑
j=1

jajaj ≥
n∑

j=1

ajaj = 〈a, a〉 = |a|2 ,

n∑
j=1

1

j
bjbj ≥

1

n

n∑
j=1

bjbj =
1

n
〈b, b〉 =

1

n
|b|2

From these we have: ∣∣∣ n∑
j=1

ajbj

∣∣∣2 = 〈a, b〉2 ≤ |a|2|b|2
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