Daniel Suryakusuma

SID: 24756460
Math 110, Spring 2019.
Homework 11, due Apr 21.

Prob 1. Let $T \in \mathcal{L}(V, W)$. Prove
(a) T is injective if and only if T^{*} is surjective;
(b) T^{*} is injective if and only if T is surjective.

Solution. In this solution we liberally use Axler 6.51, $U=\left[U^{\perp}\right]^{\perp}$ without further citation. Additionally we assume we know a linear transformation is injective if and only if its null space is zero.
(a) T is injective if and only if T^{*} is surjective;

First we prove the forward (\Longrightarrow) direction. If T is injective, ker $T=0$. But Axler 7.7(c) gives $\operatorname{ker} T=\left[\operatorname{Im} T^{*}\right]^{\perp}$. So $\operatorname{ker} T=0=\left[\operatorname{Im} T^{*}\right]^{\perp} \Longrightarrow \operatorname{Im} T^{*}=0^{\perp}=V$ by Axler $6.46(\mathrm{~b})$, precisely the requirement for T^{*} surjective.
Now for the backwards ($\Longleftarrow)$ direction, suppose we have T^{*} surjective. Then $\operatorname{Im} T^{*}=V$. But Axler $7.7(\mathrm{~b})$ gives $\operatorname{Im} T^{*}=[\operatorname{ker} T]^{\perp}$, so $V=[\operatorname{ker} T]^{\perp}$, so $\operatorname{ker} T=V^{\perp}=0$ by Axler 6.46(c), and we thus have T injective as its kernel is 0 .
(b) T^{*} is injective if and only if T is surjective.

First we prove the forward (\Longrightarrow) direction. Suppose T^{*} is injective, then ker $T^{*}=0$. By Axler $7.7(\mathrm{a})$, $\operatorname{ker} T^{*}=[\operatorname{Im} T]^{\perp}$. So $0=[\operatorname{Im} T]^{\perp} \Longrightarrow \operatorname{Im} T=0^{\perp}=W$ by Axler $6.46(\mathrm{~b})$, and T surjective as required.
Now for the backwards (\Longleftarrow) direction, suppose T is surjective. Then $\operatorname{Im} T=W$. By Axler 7.7(d), $\operatorname{Im} T=\left[\operatorname{ker} T^{*}\right]^{\perp}$. So $\operatorname{ker} T^{*}=W^{\perp}=0$ by Axler 6.46(c), and T injective (as its kernel is zero) as required.

Note to self: Recall the "adjoint of $T, " T^{*} \in \mathcal{L}(W, V)$, is defined with the condition that for all $v \in$ $V, w \in W$,

$$
\langle T v, w\rangle=\left\langle v, T^{*} w\right\rangle
$$

Prob 2. Suppose $S, T \in \mathcal{L}(V)$ are self-adjoint. Prove that $S T$ is self-adjoint if and only if $S T=T S$.
Solution. Given S, T Hermitian, then $S=S^{*}$ and $T=T^{*}$. Moreover, $\forall v, v^{\prime} \in V,\langle T v, w\rangle=\langle v, T w\rangle$. (\Longrightarrow) Suppose $S T$ is Hermitian. Then $S T=[S T]^{*}$, so we have:

$$
\begin{aligned}
S T=[S T]^{*} & =T^{*} S^{*}, \text { by Axler } 7.6(\mathrm{e}), \text { properties of adjoint } \\
& =T^{*}[S] \text { hypothesis, } S=S^{*} \\
& =T S \text { hypothesis, } T=T^{*}
\end{aligned}
$$

So $S T=T S$, as desired.
(\Longleftarrow) Suppose $S T=T S$. Performing substitutions, we have

$$
\begin{aligned}
S T & =(S)(T)=S^{*} T^{*} \text { hypothesis S,T Hermitian; substituting } S=S^{*}, T=T^{*} \\
& =[T S]^{*} \text { Axler } 7.6(\mathrm{e}),[T S]^{*}=S^{*} T^{*} \\
& =[S T]^{*} \text { hypothesis, } S T=T S \\
& \Longrightarrow T S=S T=[S T]^{*}=[T S]^{*}
\end{aligned}
$$

In other words $T S$ and $S T$ are BOTH self-adjoint (with their adjoints being equal), which of course proves $S T$ is Hermitian as desired.

Prob 3. Let $P \in \mathcal{L}(V)$ be such that $P^{2}=P$. Prove that there is a subspace U of V such that $P_{U}=P$ if and only if P is self-adjoint.

Solution. We are given $P^{2}=P$.
(\Longrightarrow) Suppose there exists subspace $U \subset V$ with $P_{U}=P=P^{2}$.
With respect to our given U, we can write $v=u+w$ and $v^{\prime}=u^{\prime}+w^{\prime}$, where $u, u^{\prime} \in U$ and $w, w^{\prime} \in U^{\perp}$. Then $P(v)=P^{2}(v)=P_{U}(v)=u$, and similarly $P\left(v^{\prime}\right)=u^{\prime}$ for all $v, v^{\prime} \in V$. Consider:

$$
\begin{aligned}
\left\langle P v, v^{\prime}\right\rangle & =\left\langle u, u^{\prime}+w^{\prime}\right\rangle, \quad(P(v)=u) \\
& =\left\langle u, u^{\prime}\right\rangle+\left\langle u, w^{\prime}\right\rangle, \quad(\text { properties of inner product }) \\
& =\left\langle u, u^{\prime}\right\rangle+0, \quad\left(u \in U, w^{\prime} \in U^{\perp} \Longrightarrow\left\langle u, w^{\prime}\right\rangle=0\right) \\
& =\left\langle u, u^{\prime}\right\rangle+\left\langle w, u^{\prime}\right\rangle, \quad\left(u^{\prime} \in U, w \in U^{\perp} \Longrightarrow\left\langle w, u^{\prime}\right\rangle=0\right) \\
& =\left\langle u+w, u^{\prime}\right\rangle, \quad(\text { properties of inner product }) \\
& =\left\langle v, P v^{\prime}\right\rangle, \quad\left(P\left(v^{\prime}\right)=u^{\prime}\right)
\end{aligned}
$$

So for all $v, v^{\prime} \in V$, we have $\left\langle P v, v^{\prime}\right\rangle=\left\langle v, P v^{\prime}\right\rangle$, precisely the requirement for P self-adjoint.
(\Longleftarrow) Suppose P is self-adjoint (Hermitian). Then $P=P^{*}=P^{2}$. Surely, finite-dimensional subspaces $U \subset V$ exist for our given V, so let this U be given and fixed. Consider the set of such P that satisfy our given initial conditions:

$$
S:=\left\{P \mid P=P^{2}, P=P^{*}\right\}
$$

We need to show there exists some U, with $P_{U} \in S$. That is, for some U, we check if $P=P_{U}$ satisfies $P=P^{2}$ and $P=P^{*}$. If so, such U exists that satisfies our requirements, and we are done. Recall that $P_{U}(u)=u$, so $P_{U}[u]=P_{U}\left[P_{U}(u)\right]=\left[P_{U}\right]^{2}(u)$. It only remains to show $P_{U}=P_{U}^{*}$, which is to show for all $v, v^{\prime} \in V$ that $\left\langle P_{U} v, v^{\prime}\right\rangle=\left\langle v, P_{U} v^{\prime}\right\rangle$. But we have already done this above in the forward direction (letting $\left.P=P_{U}\right)$. So $P_{U} \in S$, and such U exists with the specifications $P=P^{2}$ and $P=P_{U}$.

Prob 4. Let $n \in \mathbb{N}$ be fixed. Consider the real space $V:=\operatorname{span}(1, \cos x, \sin x, \cos 2 x, \sin 2 x, \ldots, \cos n x, \sin n x)$ with inner product

$$
\langle f, g\rangle:=\int_{-\pi}^{\pi} f(x) g(x) d x
$$

Show that the differentiation operator $D \in \mathcal{L}(V)$ is anti-Hermitian, i.e., satisfies $D^{*}=-D$.
Solution. First establish an orthonormal basis for V. We claim that for the above inner product, the list L is an orthonormal basis for V (given finite n): $L:=\left\{\frac{1}{\sqrt{2 \pi}}, \frac{\cos x}{\sqrt{\pi}}, \frac{\cos 2 x}{\sqrt{\pi}}, \ldots, \frac{\cos n x}{\sqrt{\pi}}, \frac{\sin x}{\sqrt{\pi}}, \frac{\sin 2 x}{\sqrt{\pi}}, \ldots, \frac{\sin n x}{\sqrt{\pi}}, \frac{\sin 2 x}{\sqrt{\pi}}\right\}$

Span follows immediately by definition of V. Linear independence can be seen from distinct elements of L being orthogonal. Let $j \neq k$. Note the following integration formulas can be found by integration by parts / tabular method.

$$
\begin{aligned}
& \int_{-\pi}^{\pi}[\cos k t][\sin k t] d t=-\left.\frac{[\cos k t]^{2}}{2 k}\right|_{-\pi} ^{\pi}=0 \\
& \int_{-\pi}^{\pi}[\cos k t][\cos j t] d t=\left.\frac{j \sin (j-k) t+k \sin (j-k) t+j \sin (j+k) t-k \sin (j+k) t}{2(j+k)(j-k)}\right|_{-\pi} ^{\pi}=0 \\
& \int_{-\pi}^{\pi}[\cos k t][\sin j t] d t=-\left.\frac{j \cos (j-k) t+k \cos (j-k) t+j \cos (j+k) t-k \cos (j+k) t}{2(j+k)(j-k)}\right|_{-\pi} ^{\pi}=0 \\
& \int_{-\pi}^{\pi}[\sin k t][\sin j t] d t=\left.\frac{j \sin (j-k) t+k \sin (j-k) t-j \sin (j k) t+k \sin (j+k) t}{2(j+k)(j-k)}\right|_{-\pi} ^{\pi}=0
\end{aligned}
$$

So each element in L is accounted for and thus is orthogonal to each distinct element. Because L is an orthogonal list, it is linearly independent. It remains to show their norms are 1.
$\left\langle\frac{\cos k t}{\sqrt{\pi}}, \frac{\cos k t}{\sqrt{\pi}}\right\rangle=\frac{1}{\pi} \int_{-\pi}^{\pi} \cos ^{2} k t d t=\frac{1}{\pi}\left[\frac{2 k t+\sin (2 k t)}{4 k}\right]_{-\pi}^{\pi}=1$
$\left\langle\frac{\sin k t}{\sqrt{\pi}}, \frac{\sin k t}{\sqrt{\pi}}\right\rangle=\frac{1}{\pi} \int_{-\pi}^{\pi} \sin ^{2} k t d t=\left.\frac{1}{\pi} \frac{2 k t-\sin (2 k t)}{4 k}\right|_{-\pi} ^{\pi}=1$
$\left\langle\frac{1}{\sqrt{2 \pi}}, \frac{1}{\sqrt{2 \pi}}\right\rangle=1$
Thus L gives and orthonormal basis of V, as desired. Let us write L as (where $e_{k}:=\frac{\cos k x}{\sqrt{\pi}}$ and $f_{k}:=\frac{\sin k x}{\sqrt{\pi}}$): $\left\{\frac{1}{\sqrt{2 \pi}}, e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{n}\right\}$.

Let $v, w \in V$. Then we have:
$v=\left\langle v, \frac{1}{\sqrt{2 \pi}}\right\rangle \frac{1}{\sqrt{2 \pi}}+\sum_{k=1}^{n}\left[\left\langle v, e_{k}\right\rangle e_{k}+\left\langle v, f_{k}\right\rangle f_{k}\right]$ and
$w=\left\langle w, \frac{1}{\sqrt{2 \pi}}\right\rangle \frac{1}{\sqrt{2 \pi}}+\sum_{k=1}^{n}\left[\left\langle w, e_{k}\right\rangle e_{k}+\left\langle w, f_{k}\right\rangle f_{k}\right]$
Then consider:

$$
\begin{aligned}
\langle D v, w\rangle & =\left\langle D\left[\left\langle v, \frac{1}{\sqrt{2 \pi}}\right\rangle \frac{1}{\sqrt{2 \pi}}+\sum_{k=1}^{n}\left[\left\langle v, e_{k}\right\rangle e_{k}+\left\langle v, f_{k}\right\rangle f_{k}\right]\right],\left[\left\langle w, \frac{1}{\sqrt{2 \pi}}\right\rangle \frac{1}{\sqrt{2 \pi}}+\sum_{k=1}^{n}\left[\left\langle w, e_{k}\right\rangle e_{k}+\left\langle w, f_{k}\right\rangle f_{k}\right]\right]\right\rangle \\
& =\left\langle 0+\sum_{k=1}^{n}\left[-k\left\langle v, e_{k}\right\rangle f_{k}+k\left\langle v, f_{k}\right\rangle e_{k}\right],\left[\left\langle w, \frac{1}{\sqrt{2 \pi}}\right\rangle \frac{1}{\sqrt{2 \pi}}+\sum_{k=1}^{n}\left[\left\langle w, e_{k}\right\rangle e_{k}+\left\langle w, f_{k}\right\rangle f_{k}\right]\right]\right\rangle \\
& =\left\langle\sum_{k=1}^{n}\left[-k\left\langle v, e_{k}\right\rangle f_{k}+k\left\langle v, f_{k}\right\rangle e_{k}\right],\left[\sum_{k=1}^{n}\left[\left\langle w, e_{k}\right\rangle e_{k}+\left\langle w, f_{k}\right\rangle f_{k}\right]\right]\right\rangle+\left\langle D v,\left\langle w, \frac{1}{\sqrt{2 \pi}}\right\rangle \frac{1}{\sqrt{2 \pi}}\right\rangle \\
& =\sum_{k=1}^{n}\left[-k\left\langle v, e_{k}\right\rangle\left\langle w, f_{k}\right\rangle+k\left\langle v, f_{k}\right\rangle\left\langle w, e_{k}\right\rangle\right] \\
& =\left\langle\left\langle v, \frac{1}{\sqrt{2 \pi}}\right\rangle \frac{1}{\sqrt{2 \pi}},-D w\right\rangle+\left\langle\sum_{k=1}^{n}\left[\left\langle v, e_{k}\right\rangle e_{k}+\left\langle v, f_{k}\right\rangle f_{k}\right],-D w\right\rangle=\langle v,-D w\rangle=\left\langle v, D^{*} w\right\rangle
\end{aligned}
$$

Prob 5. Let T be a normal operator on V. Evaluate $\|T(v-w)\|$ given that

$$
T v=2 v, \quad T w=3 w, \quad\|v\|=\|w\|=1
$$

Solution. Recall Axler 7.22 gives "Eigenvectors of normal T corresponding to distinct eigenvalues are orthogonal." Then v is the eigenvector of T corresponding to 2 , and w is that of T corresponding to 3 . Thus $\langle v, w\rangle=0$.

$$
\text { Consider: } \quad \begin{aligned}
\|T(v-w)\| & =\|T(v)-T(w)\| \\
& =\|2 v-3 w\| \quad(T v=2 v, T w=3 w) \\
& =\sqrt{\langle 2 v-3 w, 2 v-3 w\rangle} \\
& =\sqrt{\langle 2 v, 2 v-3 w\rangle-\langle 3 w, 2 v-3 w\rangle} \\
& =\sqrt{\langle 2 v, 2 v\rangle-\langle 2 v, 3 w\rangle-\langle 3 w, 2 v\rangle+\langle 3 w, 3 w\rangle} \\
& =\sqrt{\langle 2 v, 2 v\rangle-0-0+\langle 3 w, 3 w\rangle} \quad \quad \quad \text { Axler 7.22, } v, w \text { orthogonal) } \\
& =\sqrt{\|2 v\|^{2}+\|3 w\|^{2}} \\
& =\sqrt{4\|v\|^{2}+9\|w\|^{2}} \\
& =\sqrt{4+9} \quad(\|v\|=\|w\|=1) \\
& =\sqrt{13}
\end{aligned}
$$

Note this is much shorter if we allow (Axler's) pythagorean theorem.

Prob 6. Suppose T is normal. Prove that, for any $\lambda \in \mathbb{F}$ and any $k \in \mathbb{N}$,

$$
\operatorname{Null}(T-\lambda I)^{k}=\operatorname{Null}(T-\lambda I)
$$

Solution. Fix given $\lambda \in \mathbb{F}$ and $k \in \mathbb{N}$. Given T is normal, $S:=(T-\lambda I)$ is also normal (Lemma 1). Consider the set U of $k \in \mathbb{N}$ for which $\operatorname{ker}(T-\lambda I)^{k}=\operatorname{ker}(T-\lambda I)$. First note that it need not be true that ker $I=\operatorname{ker}[T-\lambda I]$, so $0 \notin U$. But $\operatorname{ker}(T-\lambda I)^{1}=\operatorname{ker}(T-\lambda I)$, so $1 \in U$. Now consider $k \geq 2$.

First we show $\operatorname{ker} S^{k} \subset \operatorname{ker} S$. Take $v \in \operatorname{ker} S^{k}$. Then $S^{k}(v)=0$. Consider

$$
\begin{aligned}
\left\langle S^{*} S^{k-1} v, S^{*} S^{k-1} v\right\rangle & =\left\langle S S^{*} S^{k-1} v, S^{k-1} v\right\rangle, \text { definition of adjoint }\left(\left\langle T v, v^{\prime}\right\rangle=\left\langle v, T^{*} v^{\prime}\right\rangle\right) \\
& \left.=\left\langle S^{*} S S^{k-1} v, S^{k-1} v\right\rangle, S \text { normal (lemma } 1\right), S \text { and } S^{*} \text { commute } \\
& =\left\langle S^{*}\left[S^{k} v\right], S^{k-1} v\right\rangle \\
& =\left\langle 0(v), S^{k-1} v\right\rangle,\left(S^{k}(v)=0 \Longrightarrow S^{*}\left[S^{k}(v)\right]=0\right) \\
& =0 \Longrightarrow 0=S^{*} S^{k-1}(v) \text { by properties of inner product } \\
\text { consider: } 0 & =\left\langle 0(v), S^{k-2}(v)\right\rangle \quad(\langle 0(v), v\rangle=0 \forall v \in V) \\
& =\left\langle S^{*} S^{k-1}(v), S^{k-2}(v)\right\rangle,\left(S^{*} S^{k-1}(v)=0, \text { above }\right) \\
& =\left\langle S^{k-1}(v), S^{k-1}(v)\right\rangle \Longrightarrow S^{k-1}(v)=0 \Longrightarrow v \in \operatorname{ker} S^{k-1}
\end{aligned}
$$

Because $k \in \mathbb{N}$, by definition of natural numbers, our recursion above $k \Longrightarrow k-1$ gives for some fixed k and for all $v \in V$, that $v \in \operatorname{ker} S^{k}$ implies $v \in \operatorname{ker} S$. Thus we have $\operatorname{ker} S^{k} \subset \operatorname{ker} S$, as desired.

Next we (easily) show $\operatorname{ker} S^{k} \supset \operatorname{ker} S$. Take $v \in \operatorname{ker} S$. Then by definition of kernel, $S(v)=0$. Consider $S^{k}(v)=S^{k-1}[S(v)]=S^{k-1}[0]=0$. So $S^{k}(v)=0$, and $v \in \operatorname{ker} S^{k}$. Hence $\operatorname{ker} S^{k} \supset \operatorname{ker} S$. We have shown $\operatorname{ker} S^{k} \subset \operatorname{ker} S$ and $\operatorname{ker} S^{k} \supset \operatorname{ker} S$, so $\operatorname{ker} S^{k}=\operatorname{ker} S$ as desired.

Lemma 1. Given T is normal, then for any $\lambda \in \mathbb{F}, S:=(T-\lambda I)$ is normal.
Proof. If $S=(T-\lambda I)$ commutes with its adjoint, then S is normal. T is normal so $T T^{*}=T^{*} T$. Consider

$$
\begin{aligned}
S S^{*} & =(T-\lambda I)(T-\lambda I)^{*}=(T-\lambda I)\left(T^{*}-\bar{\lambda} I\right) \\
& =T T^{*}-\lambda T^{*}-\bar{\lambda} T+\lambda \bar{\lambda}=T^{*} T-\lambda T^{*}-\bar{\lambda} T+\lambda \bar{\lambda} \\
& =(T-\lambda I)^{*}(T-\lambda I)=\left(T^{*}-\bar{\lambda} I\right)(T-\lambda I)=S^{*} S
\end{aligned}
$$

