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SID: 24756460
Math 110, Spring 2019.

Homework 11, due Apr 21.

Prob 1. Let T € L(V,W). Prove

(a)
(b)

T is injective if and only if T* is surjective;

T* is injective if and only if T is surjective.

Solution. In this solution we liberally use Axler 6.51, U = [U*]+ without further citation. Additionally
we assume we know a linear transformation is injective if and only if its null space is zero.

(a)

T is injective if and only if T* is surjective;

First we prove the forward ( = ) direction. If T is injective, ker T = 0. But Axler 7.7(c) gives
ker T = [Im T*]*. So kerT = 0 = [Im T*]* = Im T* = 0+ = V by Axler 6.46(b), precisely the
requirement for T surjective.

Now for the backwards ( <= ) direction, suppose we have T* surjective. Then Im T* = V. But Axler
7.7(b) gives Im T* = [ker T]*, so V = [ker T]*, so ker T = VL = 0 by Axler 6.46(c), and we thus have
T injective as its kernel is 0.

T* is injective if and only if T is surjective.

First we prove the forward ( = ) direction. Suppose T* is injective, then ker T* = 0. By Axler
7.7(a), ker T* = [Im T]*. So 0 = [Im 7] = Im T = 0+ = W by Axler 6.46(b), and T surjective as
required.

Now for the backwards ( <= ) direction, suppose T is surjective. Then Im T'= W. By Axler 7.7(d),
Im T = [ker T*]+. So kerT* = W+ = 0 by Axler 6.46(c), and T injective (as its kernel is zero) as
required.

O

Note to self: Recall the “adjoint of T',” T* € L(W,V), is defined with the condition that for all v €
ViweW,

(Tv,w) = (v, T*w).



Prob 2. Suppose S, T € L(V) are self-adjoint. Prove that ST is self-adjoint if and only if ST = T'S.

Solution. Given S,T Hermitian, then S = S* and T = T*. Moreover, Yv,v' € V, (Tv,w) = (v, Tw).
(=) Suppose ST is Hermitian. Then ST = [ST]*, so we have:

ST = [ST]* =T*S™ , by Axler 7.6(e), properties of adjoint
=T*[S] hypothesis, S = 5*
=TS hypothesis, T'=T*

So ST =TS, as desired.

(<= ) Suppose ST = T'S. Performing substitutions, we have

ST = (S)(T) = S*T* hypothesis S,T Hermitian; substituting S = S*, T =T*
= [T'S]* Axler 7.6(e), [T'S]* = S*T*
= [ST]* hypothesis, ST =TS
= TS =8T=[ST]" =[TS]*
In other words T'S and ST are BOTH self-adjoint (with their adjoints being equal), which of course proves

ST is Hermitian as desired.
O



Prob 3. Let P € L(V) be such that P? = P. Prove that there is a subspace U of V such that Py = P if
and only if P is self-adjoint.

Solution. We are given P2 = P.
( =) Suppose there exists subspace U C V with Py = P = P2
With respect to our given U, we can write v = u +w and v’ = v’ + w’, where u, v € U and w,w’ € U+.
Then P(v) = P%(v) = Py(v) = u, and similarly P(v') = v’ for all v,v" € V. Consider:

u' +w'), (P(v) =u)

,u')y + (u,w’), (properties of inner product)

)+ (wd), (W e Uwe Ut = (w,u) =0)
+w,u’), (properties of inner product)
Py, (P(') =)

u
u
u, /) +0, (uelUw e Ut = (u,w’) =0)
u
u

So for all v,v" € V, we have (Pv,v') = (v, Pv'), precisely the requirement for P self-adjoint.

( <= ) Suppose P is self-adjoint (Hermitian). Then P = P* = P2. Surely, finite-dimensional subspaces
U C V exist for our given V', so let this U be given and fixed. Consider the set of such P that satisfy our
given initial conditions:

S:={P|P = P? P = P*}.

We need to show there exists some U, with Py € S. That is, for some U, we check if P = Py satisfies
P = P2 and P = P*. If so, such U exists that satisfies our requirements, and we are done. Recall that
Py(u) = u, so Pylu] = Py[Py(u)] = [Py]?(u). It only remains to show Py = Pf;, which is to show for all
v,v" € V that (Pyv,v’) = (v, Pyv'). But we have already done this above in the forward direction (letting
P = Py). So Py € S, and such U exists with the specifications P = P? and P = Py.

O



Prob 4. Letn € IN be fixed. Consider the real space V :=span(1, cos z, sin z, cos 2z, sin 2z, . . ., cos nx, sin nx)
with inner product

(fro)={ f(2)g(x)dz
Show that the differentiation operator D € L(V) is anti-Hermitian, i.e., satisfies D* = —D.

Solution. First establish an orthonormal basis for V. We claim that for the above inner product, the list L

is an orthonormal basis for V' (given finite n): L: {\/ﬂ Cf’;;, Co\j%gc, cee C(’%w, %, S‘\“/%I, cee S‘i‘/?, s‘\‘}%w
Span follows immediately by definition of V. Linear independence can be seen from distinct elements of

L being orthogonal. Let j # k. Note the following integration formulas can be found by integration by parts

/ tabular method.

T 3 2
/ [cos kt][sin kt] dt = — [cos b |7:7T

. 2%
T . jsin(j — k)t + ksin(j — k)t + jsin(j + k)t — ksin(j + k)t |«
cos kt||cos jt| dt = , -
/_w[ llcos 1] 2 + k)G —F) -
i . _Jjeos(j — k)t + kcos(j — k)t +jcos(j + k)t — kcos(j + k)t
/—W[COS kt][sin jt] dt = 25+ k)(J — k) " =0
o o jsin(j — k)t + ksin(j — k)t — jsin(jg )t + ksin(j + k)t
sin kt|[sin jt] dt = - =0
[ niinie 2+ B ) =

So each element in L is accounted for and thus is orthogonal to each distinct element. Because L is an
orthogonal list, it is linearly independent. It remains to show their norms are 1.

<cos kt cos kt> — %fjﬂ' C082 Lkt dt = 1 |:2kt+sin(2kt):|ﬂ' _q
T

NGRS 4k
<Si\I}L€t’ si\r}ﬁt> _ 1 ff sin2 kt dt = 1 2kt—sin(2kt) 51n(2kt |7
(Ve vor) =1
Thus L gives and orthonormal basis of V', as desired. Let us write L as (where ey := % and fi:= %)
{\/%5617-”76717]01,---’]%,}-
Let v,w € V. Then we have:
v= (v, =) 7= + L (v, erder + (v, fi) fi] and
w = (w, ﬁ)ﬁ + 2 pe [(w, en)er + (w, fi) fi]
Then consider:
(Dv,w) = <D <U7\/% % +z:1 v, ex)er + (v, fk>fk]] ; l<w\/12—ﬂ 1+z:1 w, e)ex + (w, fk>fk]]>
= <O + 2 [k (v, ex) fr. + k(v, fr)ex] s | (w, E>ﬁ + ;[(w»€k>ek + (w, fk>fk]] >
= <kz_:1 [—k(v, ex) fr + k(v, fr)ex], [%Kw&wek + (w, fr) fx] > + <D07 (w, 127r>\/12—7r>
= Z [—k‘<’U7 €k><wa fk) + k‘<’U7 fk><wa €k>]
k=1
_ <<U7 %w% —Dw> + <; (v, exder + (0, F) il ,—Dw> — (0,—Dw) = (v, D*w)
O



Prob 5. Let T be a normal operator on V. Evaluate |T(v — w)|| given that
To=20, Tw=3v, ol = w]=1.

Solution. Recall Axler 7.22 gives “Eigenvectors of normal T corresponding to distinct eigenvalues are
orthogonal.” Then v is the eigenvector of T' corresponding to 2, and w is that of T' corresponding to 3. Thus
(v,w)y = 0.

Consider:  ||T(v — w)|| = ||T(v) - T(w)|
=|12v—3w|| (Tv=2v,Tw=3w)
= /(2v — 3w, 2v — 3w)
= /(2v,2v — 3w) — (3w, 2v — 3w)
=/ (2v,2v) — (20, 3w) — (3w, 2v) + (3w, 3w)
=/(2v,20) =0 — 0 + (3w, 3w)  (Axler 7.22, v, w orthogonal)
= VI[20[]2 + [13w[]?
= VA[P[? + 9[fw[]?
=vV4+9 (Il = llwll =1)
= V13

Note this is much shorter if we allow (Axler’s) pythagorean theorem.



Prob 6. Suppose T is normal. Prove that, for any A € IF and any k € IN,
Null (T — M)* = Null (T — \I).

Solution. Fix given A € IF and k € IN. Given T is normal, S:=(T — AI) is also normal (Lemma 1).
Consider the set U of k € IN for which ker(T — M\ )* = ker(T — \I). First note that it need not be true that
ker I = ker[T — ], so 0 ¢ U. But ker(T — M)! = ker(T — A\I), so 1 € U. Now consider k > 2.

First we show ker S* C ker S. Take v € ker S¥. Then S*(v) = 0. Consider

(§*SF1y, §*S*~1y) = (§5* S+~ 1y, Sk~1v), definition of adjoint((Tw,v') = (v, T*v'))
= (S*SS* 1y, %71, S normal (lemma 1), S and S* commute

= (5*[S*v], SF 1)

= (0(v), $* '), (8"(v) =0 = S*[S*(v)] = 0)

=0 = 0= S5"S*"1(v) by properties of inner product

consider: 0 = (0(v), S¥72(v))  ((0(v),v) = OVv € V)

(§*Sk=1(v), S*2(v)) ,(S*S* 1(v) =0, above)

(8¥Y(v),S* 1 (v)) = S 1(v) =0 = v € ker S¥~!

Because k € IN, by definition of natural numbers, our recursion above & = k — 1 gives for some fixed k
and for all v € V, that v € ker S*¥ implies v € ker S. Thus we have ker S¥ C ker S, as desired.

Next we (easily) show ker S¥ O ker S. Take v € ker S. Then by definition of kernel, S(v) = 0. Consider
Sk(v) = Sk¥=1[S(v)] = S¥71[0] = 0. So S¥(v) = 0, and v € ker S*. Hence ker S* O ker S. We have shown
ker S* C ker S and ker S* O ker S, so ker S¥ = ker S as desired.

O

Lemma 1. Given T is normal, then for any A € IF, S:=(T — A\I) is normal.
Proof. If S = (T — AI) commutes with its adjoint, then S is normal. T is normal so TT* = T*T. Consider

SS* = (T — AI)(T — AI)* = (T — XI)(T* — XI)
= TT* = XT* = NT + A\ = T*T — AT* — AT + A\
= (T = MX)*(T — M) = (T* — XI)(T — \I) = 5*8.



