Daniel Suryakusuma SID: 24756460 Math 110, Spring 2019. Homework 11, due Apr 21.

Prob 1. Let $T \in \mathcal{L}(V, W)$. Prove

- (a) T is injective if and only if T^* is surjective;
- (b) T^* is injective if and only if T is surjective.

Solution. In this solution we liberally use Axler 6.51, $U = [U^{\perp}]^{\perp}$ without further citation. Additionally we assume we know a linear transformation is injective if and only if its null space is zero.

(a) T is injective if and only if T^* is surjective;

First we prove the forward (\implies) direction. If T is injective, ker T = 0. But Axler 7.7(c) gives ker $T = [\text{Im } T^*]^{\perp}$. So ker $T = 0 = [\text{Im } T^*]^{\perp} \implies \text{Im } T^* = 0^{\perp} = V$ by Axler 6.46(b), precisely the requirement for T^* surjective.

Now for the backwards (\Leftarrow) direction, suppose we have T^* surjective. Then Im $T^* = V$. But Axler 7.7(b) gives Im $T^* = [\ker T]^{\perp}$, so $V = [\ker T]^{\perp}$, so $\ker T = V^{\perp} = 0$ by Axler 6.46(c), and we thus have T injective as its kernel is 0.

(b) T^* is injective if and only if T is surjective.

First we prove the forward (\implies) direction. Suppose T^* is injective, then ker $T^* = 0$. By Axler 7.7(a), ker $T^* = [\text{Im } T]^{\perp}$. So $0 = [\text{Im } T]^{\perp} \implies \text{Im } T = 0^{\perp} = W$ by Axler 6.46(b), and T surjective as required.

Now for the backwards (\Leftarrow) direction, suppose T is surjective. Then Im T = W. By Axler 7.7(d), Im $T = [\ker T^*]^{\perp}$. So ker $T^* = W^{\perp} = 0$ by Axler 6.46(c), and T injective (as its kernel is zero) as required.

Note to self: Recall the "adjoint of T," $T^* \in \mathcal{L}(W, V)$, is defined with the condition that for all $v \in V, w \in W$,

$$\langle Tv, w \rangle = \langle v, T^*w \rangle.$$

Prob 2. Suppose $S, T \in \mathcal{L}(V)$ are self-adjoint. Prove that ST is self-adjoint if and only if ST = TS.

Solution. Given S, T Hermitian, then $S = S^*$ and $T = T^*$. Moreover, $\forall v, v' \in V$, $\langle Tv, w \rangle = \langle v, Tw \rangle$. (\Longrightarrow) Suppose ST is Hermitian. Then $ST = [ST]^*$, so we have:

$$ST = [ST]^* = T^*S^*$$
, by Axler 7.6(e), properties of adjoint
= $T^*[S]$ hypothesis, $S = S^*$
= TS hypothesis, $T = T^*$

So ST = TS, as desired.

(\Leftarrow) Suppose ST = TS. Performing substitutions, we have

 $ST = (S)(T) = S^*T^*$ hypothesis S,T Hermitian; substituting $S = S^*, T = T^*$ = $[TS]^*$ Axler 7.6(e), $[TS]^* = S^*T^*$ = $[ST]^*$ hypothesis, ST = TS $\implies TS = ST = [ST]^* = [TS]^*$

In other words TS and ST are BOTH self-adjoint (with their adjoints being equal), which of course proves ST is Hermitian as desired.

Prob 3. Let $P \in \mathcal{L}(V)$ be such that $P^2 = P$. Prove that there is a subspace U of V such that $P_U = P$ if and only if P is self-adjoint.

Solution. We are given $P^2 = P$.

 (\Longrightarrow) Suppose there exists subspace $U \subset V$ with $P_U = P = P^2$.

With respect to our given U, we can write v = u + w and v' = u' + w', where $u, u' \in U$ and $w, w' \in U^{\perp}$. Then $P(v) = P^2(v) = P_U(v) = u$, and similarly P(v') = u' for all $v, v' \in V$. Consider:

$$\begin{split} \langle Pv, v' \rangle &= \langle u, u' + w' \rangle, \quad (P(v) = u) \\ &= \langle u, u' \rangle + \langle u, w' \rangle, \quad (\text{properties of inner product}) \\ &= \langle u, u' \rangle + 0, \quad (u \in U, w' \in U^{\perp} \implies \langle u, w' \rangle = 0) \\ &= \langle u, u' \rangle + \langle w, u' \rangle, \quad (u' \in U, w \in U^{\perp} \implies \langle w, u' \rangle = 0) \\ &= \langle u + w, u' \rangle, \quad (\text{properties of inner product}) \\ &= \langle v, Pv' \rangle, \quad (P(v') = u') \end{split}$$

So for all $v, v' \in V$, we have $\langle Pv, v' \rangle = \langle v, Pv' \rangle$, precisely the requirement for P self-adjoint.

(\Leftarrow) Suppose P is self-adjoint (Hermitian). Then $P = P^* = P^2$. Surely, finite-dimensional subspaces $U \subset V$ exist for our given V, so let this U be given and fixed. Consider the set of such P that satisfy our given initial conditions:

$$S := \{ P | P = P^2, P = P^* \}.$$

We need to show there exists some U, with $P_U \in S$. That is, for some U, we check if $P = P_U$ satisfies $P = P^2$ and $P = P^*$. If so, such U exists that satisfies our requirements, and we are done. Recall that $P_U(u) = u$, so $P_U[u] = P_U[P_U(u)] = [P_U]^2(u)$. It only remains to show $P_U = P_U^*$, which is to show for all $v, v' \in V$ that $\langle P_U v, v' \rangle = \langle v, P_U v' \rangle$. But we have already done this above in the forward direction (letting $P = P_U$). So $P_U \in S$, and such U exists with the specifications $P = P^2$ and $P = P_U$.

-		-	

Prob 4. Let $n \in \mathbb{N}$ be fixed. Consider the real space $V := \operatorname{span}(1, \cos x, \sin x, \cos 2x, \sin 2x, \dots, \cos nx, \sin nx)$ with inner product

$$\langle f,g \rangle := \int_{-\pi}^{\pi} f(x)g(x)dx.$$

Show that the differentiation operator $D \in \mathcal{L}(V)$ is anti-Hermitian, i.e., satisfies $D^* = -D$.

Solution. First establish an orthonormal basis for V. We claim that for the above inner product, the list L is an orthonormal basis for V (given finite n): $L := \{\frac{1}{\sqrt{2\pi}}, \frac{\cos x}{\sqrt{\pi}}, \frac{\cos 2x}{\sqrt{\pi}}, \dots, \frac{\cos nx}{\sqrt{\pi}}, \frac{\sin x}{\sqrt{\pi}}, \frac{\sin 2x}{\sqrt{\pi}}, \dots, \frac{\sin nx}{\sqrt{\pi}}, \frac{\sin 2x}{\sqrt{\pi}}, \frac{\sin 2x}{\sqrt{\pi}}, \dots, \frac{\sin nx}{\sqrt{\pi}}, \frac{\sin 2x}{\sqrt{\pi}}, \frac{\sin 2x}{\sqrt{\pi}}, \dots, \frac{\sin nx}{\sqrt{\pi}}, \frac{\sin nx}{\sqrt{\pi}},$

Span follows immediately by definition of V. Linear independence can be seen from distinct elements of L being orthogonal. Let $j \neq k$. Note the following integration formulas can be found by integration by parts / tabular method.

$$\begin{aligned} \int_{-\pi}^{\pi} [\cos kt] [\sin kt] \, dt &= -\frac{[\cos kt]^2}{2k} \Big|_{-\pi}^{\pi} = 0 \\ \int_{-\pi}^{\pi} [\cos kt] [\cos jt] \, dt &= \frac{j \sin(j-k)t + k \sin(j-k)t + j \sin(j+k)t - k \sin(j+k)t}{2(j+k)(j-k)} \Big|_{-\pi}^{\pi} = 0 \\ \int_{-\pi}^{\pi} [\cos kt] [\sin jt] \, dt &= -\frac{j \cos(j-k)t + k \cos(j-k)t + j \cos(j+k)t - k \cos(j+k)t}{2(j+k)(j-k)} \Big|_{-\pi}^{\pi} = 0 \\ \int_{-\pi}^{\pi} [\sin kt] [\sin jt] \, dt &= \frac{j \sin(j-k)t + k \sin(j-k)t - j \sin(j_k)t + k \sin(j+k)t}{2(j+k)(j-k)} \Big|_{-\pi}^{\pi} = 0 \end{aligned}$$

So each element in L is accounted for and thus is orthogonal to each distinct element. Because L is an orthogonal list, it is linearly independent. It remains to show their norms are 1.

$$\langle \frac{\cos kt}{\sqrt{\pi}}, \frac{\cos kt}{\sqrt{\pi}} \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos^2 kt \ dt = \frac{1}{\pi} \left[\frac{2kt + \sin(2kt)}{4k} \right]_{-\pi}^{\pi} = 1$$

$$\langle \frac{\sin kt}{\sqrt{\pi}}, \frac{\sin kt}{\sqrt{\pi}} \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin^2 kt \ dt = \frac{1}{\pi} \frac{2kt - \sin(2kt)}{4k} \Big|_{-\pi}^{\pi} = 1$$

$$\langle \frac{1}{\sqrt{2\pi}}, \frac{1}{\sqrt{2\pi}} \rangle = 1$$

Thus L gives and orthonormal basis of V, as desired. Let us write L as (where $e_k := \frac{\cos kx}{\sqrt{\pi}}$ and $f_k := \frac{\sin kx}{\sqrt{\pi}}$): $\{\frac{1}{\sqrt{2\pi}}, e_1, \dots, e_n, f_1, \dots, f_n\}$. Let $v, w \in V$. Then we have:

Let
$$v, w \in V$$
. Then we have:
 $v = \langle v, \frac{1}{\sqrt{2\pi}} \rangle \frac{1}{\sqrt{2\pi}} + \sum_{k=1}^{n} [\langle v, e_k \rangle e_k + \langle v, f_k \rangle f_k]$ and
 $w = \langle w, \frac{1}{\sqrt{2\pi}} \rangle \frac{1}{\sqrt{2\pi}} + \sum_{k=1}^{n} [\langle w, e_k \rangle e_k + \langle w, f_k \rangle f_k]$

Then consider:

$$\begin{split} \langle Dv, w \rangle &= \left\langle D\left[\left\langle v, \frac{1}{\sqrt{2\pi}} \right\rangle \frac{1}{\sqrt{2\pi}} + \sum_{k=1}^{n} [\left\langle v, e_{k} \right\rangle e_{k} + \left\langle v, f_{k} \right\rangle f_{k}] \right], \left[\left\langle w, \frac{1}{\sqrt{2\pi}} \right\rangle \frac{1}{\sqrt{2\pi}} + \sum_{k=1}^{n} [\left\langle w, e_{k} \right\rangle e_{k} + \left\langle w, f_{k} \right\rangle f_{k}] \right] \right\rangle \\ &= \left\langle 0 + \sum_{k=1}^{n} \left[-k \left\langle v, e_{k} \right\rangle f_{k} + k \left\langle v, f_{k} \right\rangle e_{k} \right], \left[\left\langle w, \frac{1}{\sqrt{2\pi}} \right\rangle \frac{1}{\sqrt{2\pi}} + \sum_{k=1}^{n} \left[\left\langle w, e_{k} \right\rangle e_{k} + \left\langle w, f_{k} \right\rangle f_{k} \right] \right] \right\rangle \\ &= \left\langle \sum_{k=1}^{n} \left[-k \left\langle v, e_{k} \right\rangle f_{k} + k \left\langle v, f_{k} \right\rangle e_{k} \right], \left[\sum_{k=1}^{n} \left[\left\langle w, e_{k} \right\rangle e_{k} + \left\langle w, f_{k} \right\rangle f_{k} \right] \right] \right\rangle + \left\langle Dv, \left\langle w, \frac{1}{\sqrt{2\pi}} \right\rangle \frac{1}{\sqrt{2\pi}} \right\rangle \\ &= \sum_{k=1}^{n} \left[-k \left\langle v, e_{k} \right\rangle \left\langle w, f_{k} \right\rangle + k \left\langle v, f_{k} \right\rangle \left\langle w, e_{k} \right\rangle \right] \\ &= \left\langle \left\langle v, \frac{1}{\sqrt{2\pi}} \right\rangle \frac{1}{\sqrt{2\pi}}, -Dw \right\rangle + \left\langle \sum_{k=1}^{n} \left[\left\langle v, e_{k} \right\rangle e_{k} + \left\langle v, f_{k} \right\rangle f_{k} \right], -Dw \right\rangle = \left\langle v, -Dw \right\rangle = \left\langle v, D^{*}w \right\rangle \\ &= \left\langle v, \frac{1}{\sqrt{2\pi}} \right\rangle \frac{1}{\sqrt{2\pi}}, -Dw \right\rangle + \left\langle v, \frac{1}{\sqrt{2\pi}} \left[\left\langle v, e_{k} \right\rangle e_{k} + \left\langle v, f_{k} \right\rangle f_{k} \right], -Dw \right\rangle = \left\langle v, -Dw \right\rangle = \left\langle v, D^{*}w \right\rangle$$

Prob 5. Let T be a normal operator on V. Evaluate ||T(v - w)|| given that

$$Tv = 2v,$$
 $Tw = 3w,$ $||v|| = ||w|| = 1.$

Solution. Recall Axler 7.22 gives "Eigenvectors of normal T corresponding to distinct eigenvalues are orthogonal." Then v is the eigenvector of T corresponding to 2, and w is that of T corresponding to 3. Thus $\langle v, w \rangle = 0$.

Consider:
$$||T(v - w)|| = ||T(v) - T(w)||$$

 $= ||2v - 3w|| \quad (Tv = 2v, Tw = 3w)$
 $= \sqrt{\langle 2v - 3w, 2v - 3w \rangle}$
 $= \sqrt{\langle 2v, 2v - 3w \rangle - \langle 3w, 2v - 3w \rangle}$
 $= \sqrt{\langle 2v, 2v \rangle - \langle 2v, 3w \rangle - \langle 3w, 2v \rangle + \langle 3w, 3w \rangle}$
 $= \sqrt{\langle 2v, 2v \rangle - 0 - 0 + \langle 3w, 3w \rangle} \quad (Axler 7.22, v, w orthogonal)$
 $= \sqrt{||2v||^2 + ||3w||^2}$
 $= \sqrt{4||v||^2 + 9||w||^2}$
 $= \sqrt{4+9} \quad (||v|| = ||w|| = 1)$
 $= \sqrt{13}$

Note this is much shorter if we allow (Axler's) pythagorean theorem.

Prob 6. Suppose T is normal. Prove that, for any $\lambda \in \mathbb{F}$ and any $k \in \mathbb{N}$,

$$\operatorname{Null}\left(T - \lambda I\right)^{k} = \operatorname{Null}\left(T - \lambda I\right).$$

Solution. Fix given $\lambda \in \mathbb{F}$ and $k \in \mathbb{N}$. Given T is normal, $S := (T - \lambda I)$ is also normal (Lemma 1). Consider the set U of $k \in \mathbb{N}$ for which $\ker(T - \lambda I)^k = \ker(T - \lambda I)$. First note that it need not be true that $\ker I = \ker[T - \lambda I]$, so $0 \notin U$. But $\ker(T - \lambda I)^1 = \ker(T - \lambda I)$, so $1 \in U$. Now consider $k \ge 2$.

First we show ker $S^k \subset \ker S$. Take $v \in \ker S^k$. Then $S^k(v) = 0$. Consider

$$\begin{split} \langle S^*S^{k-1}v, S^*S^{k-1}v \rangle &= \langle SS^*S^{k-1}v, S^{k-1}v \rangle, \text{ definition of adjoint}(\langle Tv, v' \rangle = \langle v, T^*v' \rangle) \\ &= \langle S^*SS^{k-1}v, S^{k-1}v \rangle, S \text{ normal (lemma 1)}, S \text{ and } S^* \text{ commute} \\ &= \langle S^*[S^kv], S^{k-1}v \rangle \\ &= \langle 0(v), S^{k-1}v \rangle, \ (S^k(v) = 0 \implies S^*[S^k(v)] = 0) \\ &= 0 \implies 0 = S^*S^{k-1}(v) \text{ by properties of inner product} \\ \text{ consider: } 0 = \langle 0(v), S^{k-2}(v) \rangle \quad (\langle 0(v), v \rangle = 0 \forall v \in V) \\ &= \langle S^*S^{k-1}(v), S^{k-2}(v) \rangle \quad , (S^*S^{k-1}(v) = 0, \text{ above}) \\ &= \langle S^{k-1}(v), S^{k-1}(v) \rangle \implies S^{k-1}(v) = 0 \implies v \in \ker S^{k-1} \end{split}$$

Because $k \in \mathbb{N}$, by definition of natural numbers, our recursion above $k \implies k-1$ gives for some fixed k and for all $v \in V$, that $v \in \ker S^k$ implies $v \in \ker S$. Thus we have $\ker S^k \subset \ker S$, as desired.

Next we (easily) show ker $S^k \supset \ker S$. Take $v \in \ker S$. Then by definition of kernel, S(v) = 0. Consider $S^k(v) = S^{k-1}[S(v)] = S^{k-1}[0] = 0$. So $S^k(v) = 0$, and $v \in \ker S^k$. Hence ker $S^k \supset \ker S$. We have shown ker $S^k \subset \ker S$ and ker $S^k \supset \ker S$, so ker $S^k = \ker S$ as desired.

Lemma 1. Given T is normal, then for any $\lambda \in \mathbb{F}$, $S := (T - \lambda I)$ is normal.

Proof. If $S = (T - \lambda I)$ commutes with its adjoint, then S is normal. T is normal so $TT^* = T^*T$. Consider

$$SS^* = (T - \lambda I)(T - \lambda I)^* = (T - \lambda I)(T^* - \overline{\lambda} I)$$

= $TT^* - \lambda T^* - \overline{\lambda} T + \lambda \overline{\lambda} = T^*T - \lambda T^* - \overline{\lambda} T + \lambda \overline{\lambda}$
= $(T - \lambda I)^*(T - \lambda I) = (T^* - \overline{\lambda} I)(T - \lambda I) = S^*S.$