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Math 110, Spring 2019.

Homework 11, due Apr 21.

Prob 1. Let T ∈ L(V,W ). Prove

(a) T is injective if and only if T ∗ is surjective;

(b) T ∗ is injective if and only if T is surjective.

Solution. In this solution we liberally use Axler 6.51, U = [U⊥]⊥ without further citation. Additionally
we assume we know a linear transformation is injective if and only if its null space is zero.

(a) T is injective if and only if T ∗ is surjective;

First we prove the forward ( =⇒ ) direction. If T is injective, kerT = 0. But Axler 7.7(c) gives
kerT = [Im T ∗]⊥. So kerT = 0 = [Im T ∗]⊥ =⇒ Im T ∗ = 0⊥ = V by Axler 6.46(b), precisely the
requirement for T ∗ surjective.

Now for the backwards (⇐= ) direction, suppose we have T ∗ surjective. Then Im T ∗ = V . But Axler
7.7(b) gives Im T ∗ = [kerT ]⊥, so V = [kerT ]⊥, so kerT = V ⊥ = 0 by Axler 6.46(c), and we thus have
T injective as its kernel is 0.

(b) T ∗ is injective if and only if T is surjective.

First we prove the forward ( =⇒ ) direction. Suppose T ∗ is injective, then kerT ∗ = 0. By Axler
7.7(a), kerT ∗ = [Im T ]⊥. So 0 = [Im T ]⊥ =⇒ Im T = 0⊥ = W by Axler 6.46(b), and T surjective as
required.

Now for the backwards ( ⇐= ) direction, suppose T is surjective. Then Im T = W . By Axler 7.7(d),
Im T = [kerT ∗]⊥. So kerT ∗ = W⊥ = 0 by Axler 6.46(c), and T injective (as its kernel is zero) as
required.

Note to self: Recall the “adjoint of T ,” T ∗ ∈ L(W,V ), is defined with the condition that for all v ∈
V,w ∈W ,

〈Tv,w〉 = 〈v, T ∗w〉.
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Prob 2. Suppose S, T ∈ L(V ) are self-adjoint. Prove that ST is self-adjoint if and only if ST = TS.

Solution. Given S, T Hermitian, then S = S∗ and T = T ∗. Moreover, ∀v, v′ ∈ V , 〈Tv,w〉 = 〈v, Tw〉.
( =⇒ ) Suppose ST is Hermitian. Then ST = [ST ]∗, so we have:

ST = [ST ]∗ = T ∗S∗ , by Axler 7.6(e), properties of adjoint

= T ∗[S] hypothesis, S = S∗

= TS hypothesis, T = T ∗

So ST = TS, as desired.

(⇐= ) Suppose ST = TS. Performing substitutions, we have

ST = (S)(T ) = S∗T ∗ hypothesis S,T Hermitian; substituting S = S∗, T = T ∗

= [TS]∗ Axler 7.6(e), [TS]∗ = S∗T ∗

= [ST ]∗ hypothesis, ST = TS

=⇒ TS = ST = [ST ]∗ = [TS]∗

In other words TS and ST are BOTH self-adjoint (with their adjoints being equal), which of course proves
ST is Hermitian as desired.
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Prob 3. Let P ∈ L(V ) be such that P 2 = P . Prove that there is a subspace U of V such that PU = P if
and only if P is self-adjoint.

Solution. We are given P 2 = P .
( =⇒ ) Suppose there exists subspace U ⊂ V with PU = P = P 2.
With respect to our given U , we can write v = u+w and v′ = u′ +w′, where u, u′ ∈ U and w,w′ ∈ U⊥.
Then P (v) = P 2(v) = PU (v) = u, and similarly P (v′) = u′ for all v, v′ ∈ V . Consider:

〈Pv, v′〉 = 〈u, u′ + w′〉, (P (v) = u)

= 〈u, u′〉+ 〈u,w′〉, (properties of inner product)

= 〈u, u′〉+ 0, (u ∈ U,w′ ∈ U⊥ =⇒ 〈u,w′〉 = 0)

= 〈u, u′〉+ 〈w, u′〉, (u′ ∈ U,w ∈ U⊥ =⇒ 〈w, u′〉 = 0)

= 〈u+ w, u′〉, (properties of inner product)

= 〈v, Pv′〉, (P (v′) = u′)

So for all v, v′ ∈ V , we have 〈Pv, v′〉 = 〈v, Pv′〉, precisely the requirement for P self-adjoint.

(⇐= ) Suppose P is self-adjoint (Hermitian). Then P = P ∗ = P 2. Surely, finite-dimensional subspaces
U ⊂ V exist for our given V , so let this U be given and fixed. Consider the set of such P that satisfy our
given initial conditions:

S :={P |P = P 2, P = P ∗}.

We need to show there exists some U , with PU ∈ S. That is, for some U , we check if P = PU satisfies
P = P 2 and P = P ∗. If so, such U exists that satisfies our requirements, and we are done. Recall that
PU (u) = u, so PU [u] = PU [PU (u)] = [PU ]2(u). It only remains to show PU = P ∗U , which is to show for all
v, v′ ∈ V that 〈PUv, v′〉 = 〈v, PUv′〉. But we have already done this above in the forward direction (letting
P = PU ). So PU ∈ S, and such U exists with the specifications P = P 2 and P = PU .
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Prob 4. Let n ∈ IN be fixed. Consider the real space V := span(1, cosx, sinx, cos 2x, sin 2x, . . . , cosnx, sinnx)
with inner product

〈f, g〉 :=
∫ π

−π
f(x)g(x)dx.

Show that the differentiation operator D ∈ L(V ) is anti-Hermitian, i.e., satisfies D∗ = −D.

Solution. First establish an orthonormal basis for V . We claim that for the above inner product, the list L
is an orthonormal basis for V (given finite n): L :={ 1√

2π
, cos x√

π
, cos 2x√

π
, . . . , cosnx√

π
, sin x√

π
, sin 2x√

π
, . . . , sinnx√

π
, sin 2x√

π
}

Span follows immediately by definition of V . Linear independence can be seen from distinct elements of
L being orthogonal. Let j 6= k. Note the following integration formulas can be found by integration by parts
/ tabular method.∫ π

−π
[cos kt][sin kt] dt = − [cos kt]2

2k

∣∣π
−π = 0∫ π

−π
[cos kt][cos jt] dt =

j sin(j − k)t+ k sin(j − k)t+ j sin(j + k)t− k sin(j + k)t

2(j + k)(j − k)

∣∣π
−π = 0∫ π

−π
[cos kt][sin jt] dt = −j cos(j − k)t+ k cos(j − k)t+ j cos(j + k)t− k cos(j + k)t

2(j + k)(j − k)

∣∣π
−π = 0∫ π

−π
[sin kt][sin jt] dt =

j sin(j − k)t+ k sin(j − k)t− j sin(jk)t+ k sin(j + k)t

2(j + k)(j − k)

∣∣π
−π = 0

So each element in L is accounted for and thus is orthogonal to each distinct element. Because L is an
orthogonal list, it is linearly independent. It remains to show their norms are 1.

〈 cos kt√
π
, cos kt√

π
〉 = 1

π

∫ π
−π cos2 kt dt = 1

π

[
2kt+sin(2kt)

4k

]π
−π

= 1

〈 sin kt√
π
, sin kt√

π
〉 = 1

π

∫ π
−π sin2 kt dt = 1

π
2kt−sin(2kt)

4k

∣∣π
−π = 1

〈 1√
2π
, 1√

2π
〉 = 1

Thus L gives and orthonormal basis of V , as desired. Let us write L as (where ek := cos kx√
π

and fk := sin kx√
π

):

{ 1√
2π
, e1, . . . , en, f1, . . . , fn}.

Let v, w ∈ V . Then we have:
v = 〈v, 1√

2π
〉 1√

2π
+
∑n
k=1[〈v, ek〉ek + 〈v, fk〉fk] and

w = 〈w, 1√
2π
〉 1√

2π
+
∑n
k=1[〈w, ek〉ek + 〈w, fk〉fk]

Then consider:

〈Dv,w〉 =

〈
D

[
〈v, 1√

2π
〉 1√

2π
+

n∑
k=1

[〈v, ek〉ek + 〈v, fk〉fk]

]
,

[
〈w, 1√

2π
〉 1√

2π
+

n∑
k=1

[〈w, ek〉ek + 〈w, fk〉fk]

]〉

=

〈
0 +

n∑
k=1

[−k〈v, ek〉fk + k〈v, fk〉ek] ,

[
〈w, 1√

2π
〉 1√

2π
+

n∑
k=1

[〈w, ek〉ek + 〈w, fk〉fk]

]〉

=

〈
n∑
k=1

[−k〈v, ek〉fk + k〈v, fk〉ek] ,

[
n∑
k=1

[〈w, ek〉ek + 〈w, fk〉fk]

]〉
+

〈
Dv, 〈w, 1√

2π
〉 1√

2π

〉

=

n∑
k=1

[−k〈v, ek〉〈w, fk〉+ k〈v, fk〉〈w, ek〉]

=

〈
〈v, 1√

2π
〉 1√

2π
,−Dw

〉
+

〈
n∑
k=1

[〈v, ek〉ek + 〈v, fk〉fk] ,−Dw

〉
= 〈v,−Dw〉 = 〈v,D∗w〉
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Prob 5. Let T be a normal operator on V . Evaluate ‖T (v − w)‖ given that

Tv = 2v, Tw = 3w, ‖v‖ = ‖w‖ = 1.

Solution. Recall Axler 7.22 gives “Eigenvectors of normal T corresponding to distinct eigenvalues are
orthogonal.” Then v is the eigenvector of T corresponding to 2, and w is that of T corresponding to 3. Thus
〈v, w〉 = 0.

Consider: ||T (v − w)|| = ||T (v)− T (w)||
= ||2v − 3w|| (Tv = 2v, Tw = 3w)

=
√
〈2v − 3w, 2v − 3w〉

=
√
〈2v, 2v − 3w〉 − 〈3w, 2v − 3w〉

=
√
〈2v, 2v〉 − 〈2v, 3w〉 − 〈3w, 2v〉+ 〈3w, 3w〉

=
√
〈2v, 2v〉 − 0− 0 + 〈3w, 3w〉 (Axler 7.22, v, w orthogonal)

=
√
||2v||2 + ||3w||2

=
√

4||v||2 + 9||w||2

=
√

4 + 9 (||v|| = ||w|| = 1)

=
√

13

Note this is much shorter if we allow (Axler’s) pythagorean theorem.
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Prob 6. Suppose T is normal. Prove that, for any λ ∈ IF and any k ∈ IN,

Null (T − λI)k = Null (T − λI).

Solution. Fix given λ ∈ IF and k ∈ IN. Given T is normal, S :=(T − λI) is also normal (Lemma 1).
Consider the set U of k ∈ IN for which ker(T − λI)k = ker(T − λI). First note that it need not be true that
ker I = ker[T − λI], so 0 /∈ U . But ker(T − λI)1 = ker(T − λI), so 1 ∈ U . Now consider k ≥ 2.

First we show kerSk ⊂ kerS. Take v ∈ kerSk. Then Sk(v) = 0. Consider

〈S∗Sk−1v, S∗Sk−1v〉 = 〈SS∗Sk−1v, Sk−1v〉, definition of adjoint(〈Tv, v′〉 = 〈v, T ∗v′〉)
= 〈S∗SSk−1v, Sk−1v〉, S normal (lemma 1), S and S∗ commute

= 〈S∗[Skv], Sk−1v〉
= 〈0(v), Sk−1v〉, (Sk(v) = 0 =⇒ S∗[Sk(v)] = 0)

= 0 =⇒ 0 = S∗Sk−1(v) by properties of inner product

consider: 0 = 〈0(v), Sk−2(v)〉 (〈0(v), v〉 = 0∀v ∈ V )

= 〈S∗Sk−1(v), Sk−2(v)〉 , (S∗Sk−1(v) = 0, above)

= 〈Sk−1(v), Sk−1(v)〉 =⇒ Sk−1(v) = 0 =⇒ v ∈ kerSk−1

Because k ∈ IN, by definition of natural numbers, our recursion above k =⇒ k − 1 gives for some fixed k
and for all v ∈ V , that v ∈ kerSk implies v ∈ kerS. Thus we have kerSk ⊂ kerS, as desired.

Next we (easily) show kerSk ⊃ kerS. Take v ∈ kerS. Then by definition of kernel, S(v) = 0. Consider
Sk(v) = Sk−1[S(v)] = Sk−1[0] = 0. So Sk(v) = 0, and v ∈ kerSk. Hence kerSk ⊃ kerS. We have shown
kerSk ⊂ kerS and kerSk ⊃ kerS, so kerSk = kerS as desired.

Lemma 1. Given T is normal, then for any λ ∈ IF, S :=(T − λI) is normal.

Proof. If S = (T − λI) commutes with its adjoint, then S is normal. T is normal so TT ∗ = T ∗T . Consider

SS∗ = (T − λI)(T − λI)∗ = (T − λI)(T ∗ − λI)

= TT ∗ − λT ∗ − λT + λλ = T ∗T − λT ∗ − λT + λλ

= (T − λI)∗(T − λI) = (T ∗ − λI)(T − λI) = S∗S.
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