
Math 104, PSET #8 and 9 Daniel Suryakusuma, 24756460

Math 104, Summer 2019
PSET #8 and 9 (due Monday, 8/5/2019)

Theorem 0.1. For the power series
∑
anx

n, let

β := lim sup |an|1/n, R :=
1

β
.

Our convention is if β = 0, then set R := +∞, and if β = +∞, set R := 0. We are guaranteed the following:
• The power series converges for |x| < R;
• The power series diverges for |x| > R,

where we call R the radius of convergence of a power series.

Problem 23.1. For each of the following power series, find the radius of convergence and determine the exact
interval of convergence.

(b)
∑

( xn )n

(e)
∑

( 2n

n! )x
n

(h)
∑

( (−1)n
n2·4n )xn

Solution. (b) We proceed directly as given by Ross 23.1. Let sn :=
∑(

x
n

)n
and an :=

(
1
n

)n
. Let

β := lim sup |an|1/n = lim sup

∣∣∣∣( 1

n

)n∣∣∣∣1/n = lim sup

(
1

n

)
= 0

and set R := +∞ because β = 0. Hence we have that sn converges ∀x ∈ R .

(e) Now let sn :=
∑(

2n

n!

)
xn, and an := 2n

n! . Let

β := lim sup |an|1/n = lim sup

∣∣∣∣2nn!

∣∣∣∣1/n = 0,

so we (again) set R := +∞, and sn converges ∀x ∈ R .

(h) Now let sn :=
∑[

(−1)n
n2·4n

]
xn, with an := (−1)n

n2·4n . Let

β := lim sup |an|1/n = lim sup

∣∣∣∣ (−1)n

n2 · 4n

∣∣∣∣1/n = lim sup

∣∣∣∣ −1

n2/n · 4

∣∣∣∣
=

1

4
lim sup

(
1

n

)2/n

=
1

4
· 1 =

1

4
,

so R := 1
β = 4, and we have that sn converges ∀x ∈ [−4, 4] ⊂ R , because the x = −41 case is handled by the fact

that
∑

1
n2 is known to converge (p = 2 series) and the x = 4 case is handled similarly (or more easily via AST).
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Problem 23.2. Repeat Exercise 23.1 for the following:
(c)

∑
xn!

(d)
∑

3n√
n
x2n+1

Solution. (c) Let sn :=
∑
anx

n =
∑
xn!, where

an :=

{
1, (∃k∈N : n = k!)

0, otherwise.

We notice that there cannot be a finite count of 1’s in an, so

β := lim sup |an|1/n = lim sup |1|1/n = 1,

and so we set R := 1
β = 1. Now we check the bounds x := {−1, 1}. Notice that for n ≥ 2, n! is even (due to 2

being a factor), so xn! for x = {−1, 1} gives the same result for each value, namely that
∑

1 does not converge (as

1k = 1,∀k). Hence we conclude that sn converges ∀x ∈ (−1, 1) .

(d) Now let sn :=
∑

3n√
n
x2n+1, with

an :=

{
3n√
n
, n ≥ 3, n odd

0, otherwise.

Now to check the bounds, notice that if x ≥ 3, then sn diverges (to see this quickly, simply consider the radius of
convergence is 1 for a geometric series and

∑
1√
n

diverges by the p-test, with p = 1
2 ≤ 1). Now for x :=−1, we

established 2n+ 1 is always odd and hence a (−1)2n+1 will not give an alternating series (this is tricky). We know

also by p = 1
2 ≤ 1 that

∑ −(3n)√
n

does not converge. Hence we conclude that sn converges ∀x ∈ (−1, 1) .

Problem 23.4. For n = 0, 1, 2, 3, . . ., let an :=
[
4+2(−1)n

5

]n
.

1. Find lim sup(an)1/n, lim inf(an)1/n, lim sup
∣∣∣an+1

an

∣∣∣ and lim inf
∣∣∣an+1

an

∣∣∣.
2. Do the series

∑
an and

∑
(−1)nan converge? Explain briefly.

3. Now consider the power series
∑
anx

n with the coefficients an as above. Find the radius of convergence and
determine the exact interval of convergence of the series.

Solution. (1) First notice that Ross does not request lim sup |an|1/n but rather without the absolute value on an
(this is because the inference requested in part (2) is purely about ‘non’-power series convergence). Further notice

that the ratio
∣∣∣an+1

an

∣∣∣ in cases like these generally give different results for when n is even or odd. We investigate

further and evaluate the requested expressions:

lim inf

∣∣∣∣an+1

an

∣∣∣∣ = lim inf

∣∣∣∣ (4 + 2(−1)n+1)n+1

5n+1
· 5n

(4 + 2(−1)n)n

∣∣∣∣ =

lim inf
∣∣∣ 6n+1

5·2n

∣∣∣ = +∞, n odd

lim inf
∣∣∣ 2n+1

5·6n

∣∣∣ = 0, n even
= 0

lim inf(an)1/n = lim inf

(
4 + 2(−1)n

5

)
=

2

5

lim sup(an)1/n = lim sup

(
4 + 2(−1)n

5

)
=

6

5

lim sup

∣∣∣∣an+1

an

∣∣∣∣ = lim sup

∣∣∣∣ (4 + 2(−1)n+1)n+1

5n+1
· 5n

(4 + 2(−1)n)n

∣∣∣∣ =

lim sup
∣∣∣ 6n+1

5·2n

∣∣∣ = +∞, n odd

lim sup
∣∣∣ 2n+1

5·6n

∣∣∣ = 0, n even
= +∞ .
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(2) Now we consider:
∑
an and

∑
(−1)nan. Immediately,

∑
an cannot converge because an itself has an > 1 for

infinitely many n (or equivalently, an 6→ 0). Now to consider
∑

(−1)nan, we first write out terms in the series:

∑
(−1)nan = (−1)0 [· · ·]0 + (−1)1

[
2

5

]1
+ (−1)2

[
6

5

]2
+ (−1)3

[
2

5

]3
+ · · ·

= 1− 2

5
+

(
6

5

)
−
(

2

5

)3

+ · · · ,

and although this is an alternating series, it turns out all these considerations are unnecessary as [(−1)nan] 6→ 0,
and hence

∑
(−1)nan diverges.

(3) Now considering the power series
∑
anx

n with coefficients an as defined above, we proceed just as we have 5
times before above: Let

β := lim sup |an|1/n = lim sup

∣∣∣∣4 + 2(−1)n

5

∣∣∣∣ =
6

5
,

so set R := 1
β = 5

6 . Now we check the boundaries and by inspection conclude that our interval of convergence is all

x ∈
(
−−5

6
,

5

6

)
. Because this would be marked as begging the question, we make this painfully explicit:

x := −5

6
=⇒

∑
anx

n =
∑∣∣∣∣4 + 2(−1)n

5

∣∣∣∣n(−5

6

)n
,

which involves a sum of an infinite terms of 1 (explicitly, at all even indices n), and hence cannot converge (anx
n 6→

0). Setting x := 5
6 gives the same result. If that isn’t sufficient, consider:

x :=
5

6
=⇒

∑
anx

n =
∑∣∣∣∣4 + 2(−1)n

5

∣∣∣∣n(5

6

)n
,

which again involves a sum of infinite terms of 1, again precisely at all even n. Finally, we conclude that the power

series
∑
anx

n converges for all x ∈
(
−5

6
,

5

6

)
.

Theorem 0.2. A sequence (fn) of functions on a set S ⊂ R converges uniformly to a function f on S if and
only if

lim
n→∞

sup{|f(x)− fn(x)| : x ∈ S} = 0.

3
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Problem 24.2 For x ∈ [0,∞), let fn(x) := x
n .

1. Find f(x) := lim fn(x).
2. Determine whether fn → f uniformly on [0, 1].
3. Determine whether fn → f uniformly on [0,∞).

Solution. (1) Fix any arbitrary x ∈ [0,∞), and notice f(x) := lim fn(x) = lim x
n = 0, so we have pointwise (this

distinction is important) convergence f(x) = lim fn(x) = 0.

(2) Now given by Ross, we say fn → f uniformly on [0, 1] if

∀ε>0∃N∈N : ∀x∈S,n>N |fn(x)− f(x)| < ε.

We show this precisely. Fix ε > 0 and any x ∈ [0, 1]. If x = 0, then fn(x) := 0
n = f(x), and of course |fn(x)−f(x)| =

|0− 0| = 0 (we need to handle this case separately as it is not given by the following). Now suppose x 6= 0. Simply
take N := x

ε . Then for n > N , we have:

|fn(x)− f(x)| =
∣∣∣x
n
− 0
∣∣∣ < ∣∣∣∣ xx/ε

∣∣∣∣ = ε,

which precisely gives uniform convergence of fn → f on [0, 1].

(3) Now we claim fn 6→ f on [0,∞). Given in the previous page, if fn → f uniformly on x ∈ [0,∞), then we must
have for all x ∈ [0,∞),

lim
n→∞

sup{|f(x)− fn(x)| : x ∈ [0,∞)} = lim
n→∞

sup
{∣∣∣x
n

∣∣∣ : x ∈ [0,∞)
}

= 0.

As given by Ross, “If f − fn is differentiable, we may use calculus to find these suprema,” even though we never
defined a derivative. Hence we proclaim that fn(x) := x

n is differentiable (with respect to x), with

f ′n(x) :=
1

n
> 0,∀x ∈ [0,∞),

where the strict inequality gives (unclaimed) intuition that fn is strictly increasing unboundedly with respect to
x and hence does not converge uniformly on [0,∞). We (do not admit we are stuck and) investigate further (by
scrapping this completely and starting with the definition of uniform convergence).

Suppose (for contradiction) that fn → f uniformly on [0,∞). Then (by definition of uniform continuity), for each
ε > 0 there exists a number N such that for all x ∈ [0,∞) and n > N , |fn(x)− f(x)| < ε. We show this uniformity
fails: fix N arbitrarily (large) and consider ε := 1. Take x0 = 2n+ 2 ∈ [0,∞] and notice

|fN+1(x0)− f(x0)| =
∣∣∣∣ x0
N + 1

∣∣∣∣ =

∣∣∣∣2N + 2

N + 1

∣∣∣∣ = 2 6< 1,

and hence fn := x
n cannot be uniformly convergent to f .

Problem 24.3. Repeat exercise 24.2 for fn := 1
1+xn . That is, for x ∈ [0,∞),

1. Find f(x) := lim fn(x).
2. Determine whether fn → f uniformly on [0, 1].
3. Determine whether fn → f uniformly on [0,∞).

Solution. (1) Considering case-work for x ∈ [0,∞), we claim the following point-wise convergence is self-evident:

f(x) := lim
n→∞

fn(x) =


1, 0 ≤ x < 1
1
2 , x = 1

0, 1 < x

4
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(2) Take x ∈ [0, 1]. If x = 1, then fn(x) = f(x) for all n (if this is not obvious, we write 1
1+1n = 1

2 ). If it is not
obvious that this equality implies |f(1)− fn(1)| < ε for any ε < 0, we expicitly state so here. Now suppose x 6= 1,

so that x ∈ [0, 1) and f(x) = 1. Fix ε > 0 and take N := max{42,
∣∣∣ log εlog x

∣∣∣}. Then for x ∈ [0, 1) and n > N ,∣∣∣∣ 1

1 + xn
− 1

∣∣∣∣ =

∣∣∣∣ 1

1 + xn
− 1 + xn

1 + xn

∣∣∣∣ =

∣∣∣∣ xn

1 + xn

∣∣∣∣ < xn

1
< x

log ε
log x = xlogx ε = ε,

as required to conclude fn → f uniformly on [0, 1].

(3) Now take x ∈ [0,∞). Splitting into cases involves identical arguments to (2) above, so we notice that in
(2) we already proved uniform continuity for [0, 1] ⊂ [0,∞). It only remains to show that fn → f uniformly
on (1,∞). From part (1) earlier, for x > 1, we have f(x) = lim fn(x) = 0. Take x ∈ (1,∞) and ε > 0. Let
N := max{42,

∣∣logx
(
1
ε

)∣∣}. Then for all n > N and x ∈ (1,∞), we have:

|fn(x)− f(x)| =
∣∣∣∣ 1

1 + xn
− 0

∣∣∣∣ < ∣∣∣∣ 1

xlogx(1/ε)

∣∣∣∣ =
1

1/ε
= ε,

as required to show fn → f uniformly on (1,∞). Because we have fn → f uniformly on [0, 1] from part (2) above,
we conclude fn → f uniformly on [0,∞) which was to be shown.

Problem 25.5. Let (fn) be a sequence of bounded functions on a set S, and suppose fn → f uniformly on S.
Prove f is a bounded function on S.

Solution. Because (fn) is a sequence of bounded functions on set S, for i ∈ N, let mi be a bound for fi, so that
|fi(x)| < mi for all x ∈ S. For each n ∈ N, define Mn := max{mi : 1 ≤ i ≤ n}. Notice that Mn is a bound for all
f1, f2, . . . , fn.
Fix some ε > 0. Because fn → f uniformly on S, fix some N where any x ∈ S gives |f(x) − fN+1(x)| < ε. Then
MN+1 is a bound for all f1, f2, . . . , fN+1. Further, notice:

|f(x)− fN+1(x)| < ε ⇐⇒ fN+1(x)− ε < f(x) < fN+1(x) + ε =⇒ |f(x)| < fN+1(x) + ε ≤Mn + ε,

so we conclude that f is a bounded function on S as we have shown that for all x ∈ S, |f(x)| < Mn + ε.

Definition: Uniformly Cauchy -

Sequence (fn) is uniformly Cauchy if ∀ε>0∃N : ∀x∈S∀m,n>N , |fn(x)− fm(x)| < ε.

Theorem 0.3. Uniformly Cauchy (fn) implies fn → f uniformly on S (there exists some such f).

Theorem 0.4. If
∑∞
k=0 gk is uniformly Cauchy on S, then the series converges uniformly on S.

Theorem 0.5. Consider a series
∑∞
k=0 of functions on S ⊂ R. Suppose each gk is continuous on S and the

series converges uniformly on S. Then the series
∑∞
k=0 gk represents a continuous function on S. Informally, I

say ‘the (infinite) sum of commonly uniformly convergent functions is continous’.

Theorem 0.6. Weierstrass M-test. Let (Mk) be a sequence of nonnegative real numbers where
∑
Mk <

∞. If |gk(x)| ≤Mk for all x ∈ S, then
∑
gk converges uniformly on S.

5
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Problem 25.6.
1. Show that if

∑
|ak| <∞, then

∑
akx

k converges uniformly on [−1, 1] to a continuous function.
2. Does

∑∞
n=1

1
n2x

n represent a continuous function on [−1, 1]?

Solution. (1) Suppose
∑
|ak| = M < ∞, so that |ak| < Mk for all k ∈ N and (Mk) → M . Then (|ak|) is a

sequence of nonnegative real numbers where
∑
|ak| <∞ (given). By the Weierstrass M -test, we conclude

∑
akx

k

converges uniformly to some function f on [−1, 1]. It remains to show f is continuous.

Notice that for all x ∈ [−1, 1], we have
∑
akx

k ≤ |ak| < Mk for all k, and the partial sums of
∑
akx

k are polyno-
mials so are continuous on [−1, 1]. Hence by the theorem that states that the infinite sum of commonly uniformly
converging continuous functions is continuous (theorem 0.5 on the previous page), we conclude f :=

∑
akx

k is
continuous, and we are done.

(2) Because
∑∣∣ 1

n2

∣∣ is a known convergent sequence (if this is imprecise, we cite p = 2 test), invoking part (1) above
directly shows that indeed yes,

∑∞
n=1

1
n2x

n represents a continuous function on [−1, 1].

Problem 25.7. Show
∑∞
n=1

1
n2 cosnx converges uniformly on R to a continuous function.

Solution. Assuming we do not know the series expansion of cos(nx) (and thus do not invoke the above result),
we (ab)use another property of cosx, we know that | cos(nx)| ≤ 1 for all n, x ∈ R, so take

fn(x) :=
1

n2
cos(nx),

so that

|fn(x)| ≤ |n−2| ≤ 1, ∀x∈R,n∈N.

Because
∑

1
n2 converges (via p = 2 test), we conclude that the Weierstrass M -test gives our desired result:

∑
fn =∑∞

n=1
1
n2 cosnx converges uniformly on R. Notice we do not claim the function to which this converges, although

this can be reasoned by pointwise convergence and periodicity.

Theorem 0.7. Let
∑∞
n=0 anx

n be a power series with R > 0 (possibly +∞). If 0 < R1 < R, then the power
series converges uniformly on [−R1, R1] to a continuous function.

Theorem 0.8. Let f(x) :=
∑∞
n=0 anx

n have radius of convergence R > 0. Then f is differentiable on (−R,R),
and

f ′(x) =

∞∑
n=1

nanx
n−1, |x| < R

Theorem 0.9. Abel’s Theorem. Let f(x) :=
∑∞
n=0 anx

n be a power series with finite positive radius of
convergence R. If the series converges at x = R, then f is continous at x = R. If the series converges at
x = −R, then f is continuous at x = −R.

6
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Problem 26.2.
1. Observe

∑∞
n=1 nx

n = x
(1−x)2 for |x| < 1; see Example 1 [page 211 in the book].

2. Evaluate
∑∞
n=1

n
2n . Compare with Exercise 14.13(d).

3. Evaluate
∑∞
n=1

n
3n and

∑∞
n=1

(−1)nn
3n .

For part (2), we include Exercise 14.13(d), which builds on Exercise 14.13(c), which uses a fact generalized from
Exercise 14.13(b). ‘(c) Prove

∑∞
n=1

n−1
2n+1 = 1

2 ; hint: k−1
2k+1 = k

2k
− k+1

2k+1 . (d) Use (c) to calculate
∑∞
n=1

n
2n .’

Solution. (1) This identity is a neat consequence of infinite series, where the differentiation operator would
otherwise drop a degree for a finite-degree polynomial. Consider the canonical geometric series, where we have:

1

1− x
= 1 + x+ x2 + · · ·+ xn + · · ·

Taking the derivative of both sides yields:

−(1− x)−2(−1) = 1 + 2x+ 3x2 + · · ·+ (n+ 1)xn + · · ·

and multiplying across by x gives:

x

(1− x)2
= x+ 2x2 + 3x3 + · · · =

∞∑
n=1

nxn,

where the series index starts from 1 (which is as we wished to show).

(2) Now we evaluate
∑∞
n=1 by setting x := 1/2 in the expression from (1) above. That is,

∞∑
n=1

n

2n
=

∞∑
n=1

nxn|x:=1/2 =
1/2

(1− 1/2)2
= 2 .

(3) Similarly, we simply set x := 1
3 and x := −1

3 into our expression in (1) to get our desired results:

∞∑
n=1

n

3n
=

∞∑
n=1

nxn|x:=1/3 =
1/3

(1− 1/3)2
=

1/3

4/9
=

3

4
,

∞∑
n=1

(−1)nn

3n
=

∞∑
n=1

nxn|x:=−1/3 =
(−1/3)

(1 + 1/3)2
=
−1/3

16/9
=
−3

16
.

Problem 26.3.
1. Use Exercise 26.2 to derive an explicit formula for

∑∞
n=1 n

2xn.

2. Evaluate
∑∞
n=1

n2

2n and
∑∞
n=1

n2

3n .

Solution. (1) From the above, we derived (and actually were simply informed) that:

∞∑
n=1

nxn = x+ 2x2 + 3x3 + · · · = x

(1− x)2
, ∀x∈R:|x|<1

Taking the derivative (with respect to x) across the equations yields:

x′
(

1

(1− x)2

)
+ x

[
(1− x)

−2
]′

= 1 + 22x+ 32x2 + 42x3 + · · · =
∞∑
n=1

n2xn−1

7
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Multiplying across by x and simplifying the LHS gives:

x

[
1

(1− x)2
+

(−2)(−1)x

(1− x)3

]
=

∞∑
n=1

n2xn

=
x(1− x) + 2x

(1− x)3
=
x− x2 + 2x2

(1− x)3
=

x2 + x

(1− x)3
.

(2) Now we use this expression to evaluate
∑∞
n=1

n2

2n and
∑∞
n=1

n2

3n . Setting x := 1/2 gives:

∞∑
n=1

n2xn|x:=1/2 =

∞∑
n=1

n2

2n
=

(1/2)2 + (1/2)

(1/2)3
=

3/4

1/8
= 6 ,

and setting x := 1/3 gives:

∞∑
n=1

n2xn|x:=1/3 =

∞∑
n=1

n2

3n
=

(1/3)2 + (1/3)

(2/3)3
=

4/9

8/27
=

3

2
.

Problem 26.7. Let f(x) = |x| for x ∈ R. Is there a power series
∑
anx

n such that f(x) =
∑∞
n=0 anx

n for all x?
Discuss. [Max’s note: you should even think about whether there is a power series representing f on any interval
around 0 whatsoever].

Solution. This function is a canonical example of a ‘simple’ continuous function but not differentiable (at x = 0).
Because f(x) := |x| is not differentiable at x = 0, f(x) = |x| cannot be represented by a power series

∑∞
n=0 anx

n.
Because any radius of convergence for a power series (as our first theorem in Ross dictates) must include its center

(in this case 0) and some radius R > 0, we conclude that there is no power series with this desired property . To

be precise, there is no poower series
∑
anx

n with the property that f(x) =
∑∞
n=0 anx

n for all x.
Another nice example is given in Ross on Page 204:

8


