Math 104, Summer 2019

PSET \#8 and 9 (due Monday, 8/5/2019)

Theorem 0.1. For the power series $\sum a_{n} x^{n}$, let

$$
\beta:=\limsup \left|a_{n}\right|^{1 / n}, \quad R:=\frac{1}{\beta}
$$

Our convention is if $\beta=0$, then set $R:=+\infty$, and if $\beta=+\infty$, set $R:=0$. We are guaranteed the following:

- The power series converges for $|x|<R$;
- The power series diverges for $|x|>R$,
where we call R the radius of convergence of a power series.

Problem 23.1. For each of the following power series, find the radius of convergence and determine the exact interval of convergence.
(b) $\sum\left(\frac{x}{n}\right)^{n}$
(e) $\sum\left(\frac{2^{n}}{n!}\right) x^{n}$
(h) $\sum\left(\frac{(-1)^{n}}{n^{2} \cdot 4^{n}}\right) x^{n}$

Solution. (b) We proceed directly as given by Ross 23.1. Let $s_{n}:=\sum\left(\frac{x}{n}\right)^{n}$ and $a_{n}:=\left(\frac{1}{n}\right)^{n}$. Let

$$
\beta:=\limsup \left|a_{n}\right|^{1 / n}=\limsup \left|\left(\frac{1}{n}\right)^{n}\right|^{1 / n}=\limsup \left(\frac{1}{n}\right)=0
$$

and set $R:=+\infty$ because $\beta=0$. Hence we have that s_{n} converges $\forall x \in \mathbb{R}$.
(e) Now let $s_{n}:=\sum\left(\frac{2^{n}}{n!}\right) x^{n}$, and $a_{n}:=\frac{2^{n}}{n!}$. Let

$$
\beta:=\limsup \left|a_{n}\right|^{1 / n}=\limsup \left|\frac{2^{n}}{n!}\right|^{1 / n}=0
$$

so we (again) set $R:=+\infty$, and s_{n} converges $\forall x \in \mathbb{R}$.
(h) Now let $s_{n}:=\sum\left[\frac{(-1)^{n}}{n^{2} \cdot 4^{n}}\right] x^{n}$, with $a_{n}:=\frac{(-1)^{n}}{n^{2} \cdot 4^{n}}$. Let

$$
\begin{aligned}
\beta & :=\limsup \left|a_{n}\right|^{1 / n}=\lim \sup \left|\frac{(-1)^{n}}{n^{2} \cdot 4^{n}}\right|^{1 / n}=\lim \sup \left|\frac{-1}{n^{2 / n} \cdot 4}\right| \\
& =\frac{1}{4} \limsup \left(\frac{1}{n}\right)^{2 / n}=\frac{1}{4} \cdot 1=\frac{1}{4}
\end{aligned}
$$

so $R:=\frac{1}{\beta}=4$, and we have that s_{n} converges $\forall x \in[-4,4] \subset \mathbb{R}$, because the $x=-41$ case is handled by the fact that $\sum \frac{1}{n^{2}}$ is known to converge ($p=2$ series) and the $x=4$ case is handled similarly (or more easily via AST).

Problem 23.2. Repeat Exercise 23.1 for the following:
(c) $\sum x^{n!}$
(d) $\sum \frac{3^{n}}{\sqrt{n}} x^{2 n+1}$

Solution. (c) Let $s_{n}:=\sum a_{n} x^{n}=\sum x^{n!}$, where

$$
a_{n}:= \begin{cases}1, & \left(\exists_{k \in \mathbb{N}}: n=k!\right) \\ 0, & \text { otherwise }\end{cases}
$$

We notice that there cannot be a finite count of 1 's in a_{n}, so

$$
\beta:=\limsup \left|a_{n}\right|^{1 / n}=\limsup |1|^{1 / n}=1,
$$

and so we set $R:=\frac{1}{\beta}=1$. Now we check the bounds $x:=\{-1,1\}$. Notice that for $n \geq 2, n!$ is even (due to 2 being a factor), so $x^{n!}$ for $x=\{-1,1\}$ gives the same result for each value, namely that $\sum 1$ does not converge (as $\left.1^{k}=1, \forall k\right)$. Hence we conclude that s_{n} converges $\forall x \in(-1,1)$.
(d) Now let $s_{n}:=\sum \frac{3^{n}}{\sqrt{n}} x^{2 n+1}$, with

$$
a_{n}:= \begin{cases}\frac{3^{n}}{\sqrt{n}}, & n \geq 3, n \text { odd } \\ 0, & \text { otherwise }\end{cases}
$$

Now to check the bounds, notice that if $x \geq 3$, then s_{n} diverges (to see this quickly, simply consider the radius of convergence is 1 for a geometric series and $\sum \frac{1}{\sqrt{n}}$ diverges by the p-test, with $p=\frac{1}{2} \leq 1$). Now for $x:=-1$, we established $2 n+1$ is always odd and hence a $(-1)^{2 n+1}$ will not give an alternating series (this is tricky). We know also by $p=\frac{1}{2} \leq 1$ that $\sum \frac{-\left(3^{n}\right)}{\sqrt{n}}$ does not converge. Hence we conclude that s_{n} converges $\forall x \in(-1,1)$.

Problem 23.4. For $n=0,1,2,3, \ldots$, let $a_{n}:=\left[\frac{4+2(-1)^{n}}{5}\right]^{n}$.

1. Find $\limsup \left(a_{n}\right)^{1 / n}, \liminf \left(a_{n}\right)^{1 / n}, \limsup \left|\frac{a_{n+1}}{a_{n}}\right|$ and $\liminf \left|\frac{a_{n+1}}{a_{n}}\right|$.
2. Do the series $\sum a_{n}$ and $\sum(-1)^{n} a_{n}$ converge? Explain briefly.
3. Now consider the power series $\sum a_{n} x^{n}$ with the coefficients a_{n} as above. Find the radius of convergence and determine the exact interval of convergence of the series.

Solution. (1) First notice that Ross does not request limsup $\left|a_{n}\right|^{1 / n}$ but rather without the absolute value on a_{n} (this is because the inference requested in part (2) is purely about 'non'-power series convergence). Further notice that the ratio $\left|\frac{a_{n+1}}{a_{n}}\right|$ in cases like these generally give different results for when n is even or odd. We investigate further and evaluate the requested expressions:

$$
\begin{aligned}
& \liminf \left|\frac{a_{n+1}}{a_{n}}\right|=\liminf \left|\frac{\left(4+2(-1)^{n+1}\right)^{n+1}}{5^{n+1}} \cdot \frac{5^{n}}{\left(4+2(-1)^{n}\right)^{n}}\right|=\left\{\left.\begin{array}{ll}
\liminf \left\lvert\, \frac{6^{n+1}}{5 \cdot 2^{n}}\right. \\
\lim \inf & \frac{2^{n+1}}{5 \cdot 6^{n}}
\end{array} \right\rvert\,=+\infty, \quad n \text { odd }=00\right. \\
& \liminf \left(a_{n}\right)^{1 / n}=\liminf \left(\frac{4+2(-1)^{n}}{5}\right)=\frac{2}{5} \\
& \lim \sup \left(a_{n}\right)^{1 / n}=\lim \sup \left(\frac{4+2(-1)^{n}}{5}\right)=\frac{6}{5} \\
& \lim \sup \left|\frac{a_{n+1}}{a_{n}}\right|=\lim \sup \left|\frac{\left(4+2(-1)^{n+1}\right)^{n+1}}{5^{n+1}} \cdot \frac{5^{n}}{\left(4+2(-1)^{n}\right)^{n}}\right|=\left\{\begin{array}{ll}
\lim \sup \left|\begin{array}{ll}
\frac{6^{n+1}}{5 \cdot 2^{n}} \\
\lim \sup & \frac{2^{n+1}}{5 \cdot 6^{n}}
\end{array}\right|=+\infty, & n \text { odd } \\
n \text { even }
\end{array}=++\infty .\right.
\end{aligned}
$$

(2) Now we consider: $\sum a_{n}$ and $\sum(-1)^{n} a_{n}$. Immediately, $\sum a_{n}$ cannot converge because a_{n} itself has $a_{n}>1$ for infinitely many n (or equivalently, $a_{n} \nrightarrow 0$). Now to consider $\sum(-1)^{n} a_{n}$, we first write out terms in the series:

$$
\begin{aligned}
\sum(-1)^{n} a_{n} & =(-1)^{0}[\cdots]^{0}+(-1)^{1}\left[\frac{2}{5}\right]^{1}+(-1)^{2}\left[\frac{6}{5}\right]^{2}+(-1)^{3}\left[\frac{2}{5}\right]^{3}+\cdots \\
& =1-\frac{2}{5}+\left(\frac{6}{5}\right)-\left(\frac{2}{5}\right)^{3}+\cdots
\end{aligned}
$$

and although this is an alternating series, it turns out all these considerations are unnecessary as $\left[(-1)^{n} a_{n}\right] \nrightarrow 0$, and hence $\sum(-1)^{n} a_{n}$ diverges.
(3) Now considering the power series $\sum a_{n} x^{n}$ with coefficients a_{n} as defined above, we proceed just as we have 5 times before above: Let

$$
\beta:=\lim \sup \left|a_{n}\right|^{1 / n}=\lim \sup \left|\frac{4+2(-1)^{n}}{5}\right|=\frac{6}{5}
$$

so set $R:=\frac{1}{\beta}=\frac{5}{6}$. Now we check the boundaries and by inspection conclude that our interval of convergence is all $x \in\left(-\frac{-5}{6}, \frac{5}{6}\right)$. Because this would be marked as begging the question, we make this painfully explicit:

$$
x:=-\frac{5}{6} \Longrightarrow \sum a_{n} x^{n}=\sum\left|\frac{4+2(-1)^{n}}{5}\right|^{n}\left(\frac{-5}{6}\right)^{n},
$$

which involves a sum of an infinite terms of 1 (explicitly, at all even indices n), and hence cannot converge $\left(a_{n} x^{n} \nrightarrow\right.$ $0)$. Setting $x:=\frac{5}{6}$ gives the same result. If that isn't sufficient, consider:

$$
x:=\frac{5}{6} \Longrightarrow \sum a_{n} x^{n}=\sum\left|\frac{4+2(-1)^{n}}{5}\right|^{n}\left(\frac{5}{6}\right)^{n}
$$

which again involves a sum of infinite terms of 1, again precisely at all even n. Finally, we conclude that the power series $\sum a_{n} x^{n}$ converges for all $x \in\left(\frac{-5}{6}, \frac{5}{6}\right)$.

Theorem 0.2. A sequence $\left(f_{n}\right)$ of functions on a set $S \subset \mathbb{R}$ converges uniformly to a function f on S if and only if

$$
\lim _{n \rightarrow \infty} \sup \left\{\left|f(x)-f_{n}(x)\right|: x \in S\right\}=0
$$

Problem 24.2 For $x \in[0, \infty)$, let $f_{n}(x):=\frac{x}{n}$.

1. Find $f(x):=\lim f_{n}(x)$.
2. Determine whether $f_{n} \rightarrow f$ uniformly on $[0,1]$.
3. Determine whether $f_{n} \rightarrow f$ uniformly on $[0, \infty)$.

Solution. (1) Fix any arbitrary $x \in[0, \infty)$, and notice $f(x):=\lim f_{n}(x)=\lim \frac{x}{n}=0$, so we have pointwise (this distinction is important) convergence $f(x)=\lim f_{n}(x)=0$.
(2) Now given by Ross, we say $f_{n} \rightarrow f$ uniformly on $[0,1]$ if

$$
\forall_{\epsilon>0} \exists_{N \in \mathbb{N}}: \forall_{x \in S, n>N}\left|f_{n}(x)-f(x)\right|<\epsilon
$$

We show this precisely. Fix $\epsilon>0$ and any $x \in[0,1]$. If $x=0$, then $f_{n}(x):=\frac{0}{n}=f(x)$, and of course $\left|f_{n}(x)-f(x)\right|=$ $|0-0|=0$ (we need to handle this case separately as it is not given by the following). Now suppose $x \neq 0$. Simply take $N:=\frac{x}{\epsilon}$. Then for $n>N$, we have:

$$
\left|f_{n}(x)-f(x)\right|=\left|\frac{x}{n}-0\right|<\left|\frac{x}{x / \epsilon}\right|=\epsilon
$$

which precisely gives uniform convergence of $f_{n} \rightarrow f$ on $[0,1]$.
(3) Now we claim $f_{n} \nrightarrow f$ on $[0, \infty)$. Given in the previous page, if $f_{n} \rightarrow f$ uniformly on $x \in[0, \infty)$, then we must have for all $x \in[0, \infty)$,

$$
\lim _{n \rightarrow \infty} \sup \left\{\left|f(x)-f_{n}(x)\right|: x \in[0, \infty)\right\}=\lim _{n \rightarrow \infty} \sup \left\{\left|\frac{x}{n}\right|: x \in[0, \infty)\right\}=0
$$

As given by Ross, "If $f-f_{n}$ is differentiable, we may use calculus to find these suprema," even though we never defined a derivative. Hence we proclaim that $f_{n}(x):=\frac{x}{n}$ is differentiable (with respect to x), with

$$
f_{n}^{\prime}(x):=\frac{1}{n}>0, \forall x \in[0, \infty)
$$

where the strict inequality gives (unclaimed) intuition that f_{n} is strictly increasing unboundedly with respect to x and hence does not converge uniformly on $[0, \infty$). We (do not admit we are stuck and) investigate further (by scrapping this completely and starting with the definition of uniform convergence).

Suppose (for contradiction) that $f_{n} \rightarrow f$ uniformly on $[0, \infty)$. Then (by definition of uniform continuity), for each $\epsilon>0$ there exists a number N such that for all $x \in[0, \infty)$ and $n>N,\left|f_{n}(x)-f(x)\right|<\epsilon$. We show this uniformity fails: fix N arbitrarily (large) and consider $\epsilon:=1$. Take $x_{0}=2 n+2 \in[0, \infty]$ and notice

$$
\left|f_{N+1}\left(x_{0}\right)-f\left(x_{0}\right)\right|=\left|\frac{x_{0}}{N+1}\right|=\left|\frac{2 N+2}{N+1}\right|=2 \nless 1,
$$

and hence $f_{n}:=\frac{x}{n}$ cannot be uniformly convergent to f.

Problem 24.3. Repeat exercise 24.2 for $f_{n}:=\frac{1}{1+x^{n}}$. That is, for $x \in[0, \infty)$,

1. Find $f(x):=\lim f_{n}(x)$.
2. Determine whether $f_{n} \rightarrow f$ uniformly on $[0,1]$.
3. Determine whether $f_{n} \rightarrow f$ uniformly on $[0, \infty)$.

Solution. (1) Considering case-work for $x \in[0, \infty)$, we claim the following point-wise convergence is self-evident:

$$
f(x):=\lim _{n \rightarrow \infty} f_{n}(x)= \begin{cases}1, & 0 \leq x<1 \\ \frac{1}{2}, & x=1 \\ 0, & 1<x\end{cases}
$$

(2) Take $x \in[0,1]$. If $x=1$, then $f_{n}(x)=f(x)$ for all n (if this is not obvious, we write $\frac{1}{1+1^{n}}=\frac{1}{2}$). If it is not obvious that this equality implies $\left|f(1)-f_{n}(1)\right|<\epsilon$ for any $\epsilon<0$, we expicitly state so here. Now suppose $x \neq 1$, so that $x \in[0,1)$ and $f(x)=1$. Fix $\epsilon>0$ and take $N:=\max \left\{42,\left|\frac{\log \epsilon}{\log x}\right|\right\}$. Then for $x \in[0,1)$ and $n>N$,

$$
\left|\frac{1}{1+x^{n}}-1\right|=\left|\frac{1}{1+x^{n}}-\frac{1+x^{n}}{1+x^{n}}\right|=\left|\frac{x^{n}}{1+x^{n}}\right|<\frac{x^{n}}{1}<x^{\frac{\log \epsilon}{\log x}}=x^{\log _{x} \epsilon}=\epsilon
$$

as required to conclude $f_{n} \rightarrow f$ uniformly on $[0,1]$.
(3) Now take $x \in[0, \infty)$. Splitting into cases involves identical arguments to (2) above, so we notice that in (2) we already proved uniform continuity for $[0,1] \subset[0, \infty)$. It only remains to show that $f_{n} \rightarrow f$ uniformly on $(1, \infty)$. From part (1) earlier, for $x>1$, we have $f(x)=\lim f_{n}(x)=0$. Take $x \in(1, \infty)$ and $\epsilon>0$. Let $N:=\max \left\{42,\left|\log _{x}\left(\frac{1}{\epsilon}\right)\right|\right\}$. Then for all $n>N$ and $x \in(1, \infty)$, we have:

$$
\left|f_{n}(x)-f(x)\right|=\left|\frac{1}{1+x^{n}}-0\right|<\left|\frac{1}{x^{\log _{x}(1 / \epsilon)}}\right|=\frac{1}{1 / \epsilon}=\epsilon
$$

as required to show $f_{n} \rightarrow f$ uniformly on $(1, \infty)$. Because we have $f_{n} \rightarrow f$ uniformly on $[0,1]$ from part (2) above, we conclude $f_{n} \rightarrow f$ uniformly on $[0, \infty)$ which was to be shown.

Problem 25.5. Let $\left(f_{n}\right)$ be a sequence of bounded functions on a set S, and suppose $f_{n} \rightarrow f$ uniformly on S. Prove f is a bounded function on S.

Solution. Because $\left(f_{n}\right)$ is a sequence of bounded functions on set S, for $i \in \mathbb{N}$, let m_{i} be a bound for f_{i}, so that $\left|f_{i}(x)\right|<m_{i}$ for all $x \in S$. For each $n \in \mathbb{N}$, define $M_{n}:=\max \left\{m_{i}: 1 \leq i \leq n\right\}$. Notice that M_{n} is a bound for all $f_{1}, f_{2}, \ldots, f_{n}$.
Fix some $\epsilon>0$. Because $f_{n} \rightarrow f$ uniformly on S, fix some N where any $x \in S$ gives $\left|f(x)-f_{N+1}(x)\right|<\epsilon$. Then M_{N+1} is a bound for all $f_{1}, f_{2}, \ldots, f_{N+1}$. Further, notice:

$$
\left|f(x)-f_{N+1}(x)\right|<\epsilon \Longleftrightarrow f_{N+1}(x)-\epsilon<f(x)<f_{N+1}(x)+\epsilon \Longrightarrow|f(x)|<f_{N+1}(x)+\epsilon \leq M_{n}+\epsilon,
$$

so we conclude that f is a bounded function on S as we have shown that for all $x \in S,|f(x)|<M_{n}+\epsilon$.

Definition: Uniformly Cauchy -

Sequence $\left(f_{n}\right)$ is uniformly Cauchy if $\forall_{\epsilon>0} \exists_{N}: \forall_{x \in S} \forall_{m, n>N}, \quad\left|f_{n}(x)-f_{m}(x)\right|<\epsilon$.

Theorem 0.3. Uniformly Cauchy $\left(f_{n}\right)$ implies $f_{n} \rightarrow f$ uniformly on S (there exists some such f).

Theorem 0.4. If $\sum_{k=0}^{\infty} g_{k}$ is uniformly Cauchy on S, then the series converges uniformly on S.

Theorem 0.5. Consider a series $\sum_{k=0}^{\infty}$ of functions on $S \subset \mathbb{R}$. Suppose each g_{k} is continuous on S and the series converges uniformly on S. Then the series $\sum_{k=0}^{\infty} g_{k}$ represents a continuous function on S. Informally, I say 'the (infinite) sum of commonly uniformly convergent functions is continous'.

Theorem 0.6. Weierstrass M-test. Let $\left(M_{k}\right)$ be a sequence of nonnegative real numbers where $\sum M_{k}<$ ∞. If $\left|g_{k}(x)\right| \leq M_{k}$ for all $x \in S$, then $\sum g_{k}$ converges uniformly on S.

Problem 25.6.

1. Show that if $\sum\left|a_{k}\right|<\infty$, then $\sum a_{k} x^{k}$ converges uniformly on $[-1,1]$ to a continuous function.
2. Does $\sum_{n=1}^{\infty} \frac{1}{n^{2}} x^{n}$ represent a continuous function on $[-1,1]$?

Solution. (1) Suppose $\sum\left|a_{k}\right|=M<\infty$, so that $\left|a_{k}\right|<M_{k}$ for all $k \in \mathbb{N}$ and $\left(M_{k}\right) \rightarrow M$. Then ($\left.\left|a_{k}\right|\right)$ is a sequence of nonnegative real numbers where $\sum\left|a_{k}\right|<\infty$ (given). By the Weierstrass M-test, we conclude $\sum a_{k} x^{k}$ converges uniformly to some function f on $[-1,1]$. It remains to show f is continuous.

Notice that for all $x \in[-1,1]$, we have $\sum a_{k} x^{k} \leq\left|a_{k}\right|<M_{k}$ for all k, and the partial sums of $\sum a_{k} x^{k}$ are polynomials so are continuous on $[-1,1]$. Hence by the theorem that states that the infinite sum of commonly uniformly converging continuous functions is continuous (theorem 0.5 on the previous page), we conclude $f:=\sum a_{k} x^{k}$ is continuous, and we are done.
(2) Because $\sum\left|\frac{1}{n^{2}}\right|$ is a known convergent sequence (if this is imprecise, we cite $p=2$ test), invoking part (1) above directly shows that indeed yes, $\sum_{n=1}^{\infty} \frac{1}{n^{2}} x^{n}$ represents a continuous function on $[-1,1]$.

Problem 25.7. Show $\sum_{n=1}^{\infty} \frac{1}{n^{2}} \cos n x$ converges uniformly on \mathbb{R} to a continuous function.
Solution. Assuming we do not know the series expansion of $\cos (n x)$ (and thus do not invoke the above result), we (ab)use another property of $\cos x$, we know that $|\cos (n x)| \leq 1$ for all $n, x \in \mathbb{R}$, so take

$$
f_{n}(x):=\frac{1}{n^{2}} \cos (n x)
$$

so that

$$
\left|f_{n}(x)\right| \leq\left|n^{-2}\right| \leq 1, \quad \forall x \in \mathbb{R}, n \in \mathbb{N}
$$

Because $\sum \frac{1}{n^{2}}$ converges (via $p=2$ test), we conclude that the Weierstrass M-test gives our desired result: $\sum f_{n}=$ $\sum_{n=1}^{\infty} \frac{1}{n^{2}} \cos n x$ converges uniformly on \mathbb{R}. Notice we do not claim the function to which this converges, although this can be reasoned by pointwise convergence and periodicity.

Theorem 0.7. Let $\sum_{n=0}^{\infty} a_{n} x^{n}$ be a power series with $R>0$ (possibly $+\infty$). If $0<R_{1}<R$, then the power series converges uniformly on $\left[-R_{1}, R_{1}\right]$ to a continuous function.

Theorem 0.8. Let $f(x):=\sum_{n=0}^{\infty} a_{n} x^{n}$ have radius of convergence $R>0$. Then f is differentiable on $(-R, R)$, and

$$
f^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n} x^{n-1}, \quad|x|<R
$$

Theorem 0.9. Abel's Theorem. Let $f(x):=\sum_{n=0}^{\infty} a_{n} x^{n}$ be a power series with finite positive radius of convergence R. If the series converges at $x=R$, then f is continous at $x=R$. If the series converges at $x=-R$, then f is continuous at $x=-R$.

Problem 26.2.

1. Observe $\sum_{n=1}^{\infty} n x^{n}=\frac{x}{(1-x)^{2}}$ for $|x|<1$; see Example 1 [page 211 in the book].
2. Evaluate $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$. Compare with Exercise 14.13(d).
3. Evaluate $\sum_{n=1}^{\infty} \frac{n}{3^{n}}$ and $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{3^{n}}$.

For part (2), we include Exercise 14.13(d), which builds on Exercise 14.13(c), which uses a fact generalized from Exercise 14.13(b). '(c) Prove $\sum_{n=1}^{\infty} \frac{n-1}{2^{n+1}}=\frac{1}{2}$; hint: $\frac{k-1}{2^{k+1}}=\frac{k}{2^{k}}-\frac{k+1}{2^{k+1}}$. (d) Use (c) to calculate $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$.'
Solution. (1) This identity is a neat consequence of infinite series, where the differentiation operator would otherwise drop a degree for a finite-degree polynomial. Consider the canonical geometric series, where we have:

$$
\frac{1}{1-x}=1+x+x^{2}+\cdots+x^{n}+\cdots
$$

Taking the derivative of both sides yields:

$$
-(1-x)^{-2}(-1)=1+2 x+3 x^{2}+\cdots+(n+1) x^{n}+\cdots
$$

and multiplying across by x gives:

$$
\frac{x}{(1-x)^{2}}=x+2 x^{2}+3 x^{3}+\cdots=\sum_{n=1}^{\infty} n x^{n}
$$

where the series index starts from 1 (which is as we wished to show).
(2) Now we evaluate $\sum_{n=1}^{\infty}$ by setting $x:=1 / 2$ in the expression from (1) above. That is,

$$
\sum_{n=1}^{\infty} \frac{n}{2^{n}}=\left.\sum_{n=1}^{\infty} n x^{n}\right|_{x:=1 / 2}=\frac{1 / 2}{(1-1 / 2)^{2}}=2
$$

(3) Similarly, we simply set $x:=\frac{1}{3}$ and $x:=\frac{-1}{3}$ into our expression in (1) to get our desired results:

$$
\begin{array}{r}
\sum_{n=1}^{\infty} \frac{n}{3^{n}}=\left.\sum_{n=1}^{\infty} n x^{n}\right|_{x:=1 / 3}=\frac{1 / 3}{(1-1 / 3)^{2}}=\frac{1 / 3}{4 / 9}=\frac{3}{4} \\
\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{3^{n}}=\left.\sum_{n=1}^{\infty} n x^{n}\right|_{x:=-1 / 3}=\frac{(-1 / 3)}{(1+1 / 3)^{2}}=\frac{-1 / 3}{16 / 9}=\frac{-3}{16}
\end{array}
$$

Problem 26.3.

1. Use Exercise 26.2 to derive an explicit formula for $\sum_{n=1}^{\infty} n^{2} x^{n}$.
2. Evaluate $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}$ and $\sum_{n=1}^{\infty} \frac{n^{2}}{3^{n}}$.

Solution. (1) From the above, we derived (and actually were simply informed) that:

$$
\sum_{n=1}^{\infty} n x^{n}=x+2 x^{2}+3 x^{3}+\cdots=\frac{x}{(1-x)^{2}}, \quad \forall_{x \in \mathbb{R}:|x|<1}
$$

Taking the derivative (with respect to x) across the equations yields:

$$
x^{\prime}\left(\frac{1}{(1-x)^{2}}\right)+x\left[(1-x)^{-2}\right]^{\prime}=1+2^{2} x+3^{2} x^{2}+4^{2} x^{3}+\cdots=\sum_{n=1}^{\infty} n^{2} x^{n-1}
$$

Multiplying across by x and simplifying the LHS gives:

$$
\begin{aligned}
x\left[\frac{1}{(1-x)^{2}}+\frac{(-2)(-1) x}{(1-x)^{3}}\right]=\sum_{n=1}^{\infty} n^{2} x^{n} & \\
& =\frac{x(1-x)+2 x}{(1-x)^{3}}=\frac{x-x^{2}+2 x^{2}}{(1-x)^{3}}=\frac{x^{2}+x}{(1-x)^{3}}
\end{aligned}
$$

(2) Now we use this expression to evaluate $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}$ and $\sum_{n=1}^{\infty} \frac{n^{2}}{3^{n}}$. Setting $x:=1 / 2$ gives:

$$
\left.\sum_{n=1}^{\infty} n^{2} x^{n}\right|_{x:=1 / 2}=\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}=\frac{(1 / 2)^{2}+(1 / 2)}{(1 / 2)^{3}}=\frac{3 / 4}{1 / 8}=6
$$

and setting $x:=1 / 3$ gives:

$$
\left.\sum_{n=1}^{\infty} n^{2} x^{n}\right|_{x:=1 / 3}=\sum_{n=1}^{\infty} \frac{n^{2}}{3^{n}}=\frac{(1 / 3)^{2}+(1 / 3)}{(2 / 3)^{3}}=\frac{4 / 9}{8 / 27}=\frac{3}{2}
$$

Problem 26.7. Let $f(x)=|x|$ for $x \in \mathbb{R}$. Is there a power series $\sum a_{n} x^{n}$ such that $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ for all x ? Discuss. [Max's note: you should even think about whether there is a power series representing f on any interval around 0 whatsoever].

Solution. This function is a canonical example of a 'simple' continuous function but not differentiable (at $x=0$). Because $f(x):=|x|$ is not differentiable at $x=0, f(x)=|x|$ cannot be represented by a power series $\sum_{n=0}^{\infty} a_{n} x^{n}$. Because any radius of convergence for a power series (as our first theorem in Ross dictates) must include its center (in this case 0) and some radius $R>0$, we conclude that there is no power series with this desired property. To be precise, there is no poower series $\sum a_{n} x^{n}$ with the property that $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ for all x. Another nice example is given in Ross on Page 204:

204 4. Sequences and Series of Functions

FIGURE 25.1

Example 3

Let g be the function drawn in Fig. 25.1, and let $g_{n}(x)=g\left(4^{n} x\right)$ for all $x \in \mathbb{R}$. Then $\sum_{n=0}^{\infty}\left(\frac{3}{4}\right)^{n} g_{n}(x)$ is a series of functions. The limit function f is continuous on \mathbb{R}, but has the amazing property that it is not differentiable at any point! The proof of the nondifferentiability of f is somewhat delicate; see $[62,7.18]$. A similar example is given in Example 38.1 on page 348.

