Math 104, Summer 2019

PSET #8 and 9 (due Monday, 8/5/2019)

Theorem 0.1. For the power series $\sum a_n x^n$, let

$$\beta := \limsup |a_n|^{1/n}, \qquad R := \frac{1}{\beta}.$$

Our convention is if $\beta = 0$, then set $R := +\infty$, and if $\beta = +\infty$, set R := 0. We are guaranteed the following:

- The power series converges for |x| < R;
- The power series diverges for |x| > R,

where we call R the radius of convergence of a power series.

Problem 23.1. For each of the following power series, find the radius of convergence and determine the exact interval of convergence.

(b) $\sum \left(\frac{x}{n}\right)^n$ (e) $\sum \left(\frac{2^n}{n!}\right)x^n$ (h) $\sum \left(\frac{(-1)^n}{n^2 \cdot 4^n}\right)x^n$

Solution. (b) We proceed directly as given by Ross 23.1. Let $s_n := \sum \left(\frac{x}{n}\right)^n$ and $a_n := \left(\frac{1}{n}\right)^n$. Let

$$\beta := \limsup |a_n|^{1/n} = \limsup \left| \left(\frac{1}{n}\right)^n \right|^{1/n} = \limsup \left(\frac{1}{n}\right) = 0$$

and set $R := +\infty$ because $\beta = 0$. Hence we have that s_n converges $| \forall x \in \mathbb{R} |$

(e) Now let $s_n := \sum \left(\frac{2^n}{n!}\right) x^n$, and $a_n := \frac{2^n}{n!}$. Let

$$\beta := \limsup |a_n|^{1/n} = \limsup \left| \frac{2^n}{n!} \right|^{1/n} = 0,$$

so we (again) set $R := +\infty$, and s_n converges $\forall x \in \mathbb{R}$.

(h) Now let $s_n := \sum \left[\frac{(-1)^n}{n^2 \cdot 4^n}\right] x^n$, with $a_n := \frac{(-1)^n}{n^2 \cdot 4^n}$. Let

k

$$\begin{aligned} \beta &:= \limsup |a_n|^{1/n} = \limsup \left| \frac{(-1)^n}{n^2 \cdot 4^n} \right|^{1/n} = \limsup \left| \frac{-1}{n^{2/n} \cdot 4} \right| \\ &= \frac{1}{4} \limsup \left(\frac{1}{n} \right)^{2/n} = \frac{1}{4} \cdot 1 = \frac{1}{4}, \end{aligned}$$

so $R := \frac{1}{\beta} = 4$, and we have that s_n converges $\forall x \in [-4, 4] \subset \mathbb{R}$, because the x = -41 case is handled by the fact that $\sum \frac{1}{n^2}$ is known to converge (p = 2 series) and the x = 4 case is handled similarly (or more easily via AST). **Problem 23.2.** Repeat Exercise 23.1 for the following: (c) $\sum_{n=1}^{\infty} x^{n!}$ (d) $\sum_{n=1}^{\infty} \frac{3^n}{\sqrt{n}} x^{2n+1}$

Solution. (c) Let $s_n := \sum a_n x^n = \sum x^{n!}$, where

$$a_n := \begin{cases} 1, & (\exists_{k \in \mathbb{N}} : n = k!) \\ 0, & \text{otherwise.} \end{cases}$$

We notice that there cannot be a finite count of 1's in a_n , so

 $\beta := \limsup |a_n|^{1/n} = \limsup |1|^{1/n} = 1.$

and so we set $R := \frac{1}{\beta} = 1$. Now we check the bounds $x := \{-1, 1\}$. Notice that for $n \ge 2$, n! is even (due to 2) being a factor), so $x^{n!}$ for $x = \{-1, 1\}$ gives the same result for each value, namely that $\sum 1$ does not converge (as $1^k = 1, \forall k$). Hence we conclude that s_n converges $\forall x \in (-1, 1)$

(d) Now let $s_n := \sum \frac{3^n}{\sqrt{n}} x^{2n+1}$, with

$$a_n := \begin{cases} \frac{3^n}{\sqrt{n}}, & n \ge 3, n \text{ odd} \\ 0, & \text{otherwise.} \end{cases}$$

Now to check the bounds, notice that if $x \ge 3$, then s_n diverges (to see this quickly, simply consider the radius of convergence is 1 for a geometric series and $\sum \frac{1}{\sqrt{n}}$ diverges by the *p*-test, with $p = \frac{1}{2} \leq 1$). Now for x := -1, we established 2n + 1 is always odd and hence a $(-1)^{2n+1}$ will not give an alternating series (this is tricky). We know also by $p = \frac{1}{2} \leq 1$ that $\sum \frac{-(3^n)}{\sqrt{n}}$ does not converge. Hence we conclude that s_n converges $\forall x \in (-1, 1)$

Problem 23.4. For $n = 0, 1, 2, 3, ..., \text{ let } a_n := \left[\frac{4+2(-1)^n}{5}\right]^n$.

- 1. Find $\limsup_{n \to \infty} (a_n)^{1/n}$, $\limsup_{n \to \infty} (a_n)^{1/n}$, $\limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$ and $\limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$. 2. Do the series $\sum_{n \to \infty} a_n$ and $\sum_{n \to \infty} (-1)^n a_n$ converge? Explain briefly.
- 3. Now consider the power series $\sum a_n x^n$ with the coefficients a_n as above. Find the radius of convergence and determine the exact interval of convergence of the series.

Solution. (1) First notice that Ross does not request $\limsup |a_n|^{1/n}$ but rather without the absolute value on a_n (this is because the inference requested in part (2) is purely about 'non'-power series convergence). Further notice that the ratio $\left|\frac{a_{n+1}}{a_n}\right|$ in cases like these generally give different results for when n is even or odd. We investigate further and evaluate the requested expressions:

(2) Now we consider: $\sum a_n$ and $\sum (-1)^n a_n$. Immediately, $\sum a_n$ cannot converge because a_n itself has $a_n > 1$ for infinitely many n (or equivalently, $a_n \neq 0$). Now to consider $\sum (-1)^n a_n$, we first write out terms in the series:

$$\sum (-1)^n a_n = (-1)^0 \left[\cdots\right]^0 + (-1)^1 \left[\frac{2}{5}\right]^1 + (-1)^2 \left[\frac{6}{5}\right]^2 + (-1)^3 \left[\frac{2}{5}\right]^3 + \cdots$$
$$= 1 - \frac{2}{5} + \left(\frac{6}{5}\right) - \left(\frac{2}{5}\right)^3 + \cdots,$$

and although this is an alternating series, it turns out all these considerations are unnecessary as $[(-1)^n a_n] \neq 0$, and hence $\sum (-1)^n a_n$ diverges.

(3) Now considering the power series $\sum a_n x^n$ with coefficients a_n as defined above, we proceed just as we have 5 times before above: Let

$$\beta := \limsup |a_n|^{1/n} = \limsup \left| \frac{4 + 2(-1)^n}{5} \right| = \frac{6}{5},$$

so set $R := \frac{1}{\beta} = \frac{5}{6}$. Now we check the boundaries and by inspection conclude that our interval of convergence is all $x \in \left(-\frac{-5}{6}, \frac{5}{6}\right)$. Because this would be marked as begging the question, we make this painfully explicit:

$$x := -\frac{5}{6} \implies \sum a_n x^n = \sum \left| \frac{4 + 2(-1)^n}{5} \right|^n \left(\frac{-5}{6} \right)^n,$$

which involves a sum of an infinite terms of 1 (explicitly, at all even indices n), and hence cannot converge $(a_n x^n \not\rightarrow 0)$. Setting $x := \frac{5}{6}$ gives the same result. If that isn't sufficient, consider:

$$x := \frac{5}{6} \implies \sum a_n x^n = \sum \left| \frac{4 + 2(-1)^n}{5} \right|^n \left(\frac{5}{6}\right)^n,$$

which again involves a sum of infinite terms of 1, again precisely at all even *n*. Finally, we conclude that the power series $\sum a_n x^n$ converges for all $x \in \left(\frac{-5}{6}, \frac{5}{6}\right)$.

Theorem 0.2. A sequence (f_n) of functions on a set $S \subset \mathbb{R}$ converges uniformly to a function f on S if and only if

$$\lim_{n \to \infty} \sup\{|f(x) - f_n(x)| : x \in S\} = 0.$$

Problem 24.2 For $x \in [0, \infty)$, let $f_n(x) := \frac{x}{n}$.

- 1. Find $f(x) := \lim f_n(x)$.
- 2. Determine whether $f_n \to f$ uniformly on [0, 1].
- 3. Determine whether $f_n \to f$ uniformly on $[0, \infty)$.

Solution. (1) Fix any arbitrary $x \in [0, \infty)$, and notice $f(x) := \lim f_n(x) = \lim \frac{x}{n} = 0$, so we have **pointwise** (this distinction is important) convergence $f(x) = \lim f_n(x) = 0$.

(2) Now given by Ross, we say $f_n \to f$ uniformly on [0, 1] if

$$\forall_{\epsilon>0} \exists_{N\in\mathbb{N}} : \forall_{x\in S, n>N} |f_n(x) - f(x)| < \epsilon.$$

We show this precisely. Fix $\epsilon > 0$ and any $x \in [0, 1]$. If x = 0, then $f_n(x) := \frac{0}{n} = f(x)$, and of course $|f_n(x) - f(x)| = |0 - 0| = 0$ (we need to handle this case separately as it is not given by the following). Now suppose $x \neq 0$. Simply take $N := \frac{x}{\epsilon}$. Then for n > N, we have:

$$|f_n(x) - f(x)| = \left|\frac{x}{n} - 0\right| < \left|\frac{x}{x/\epsilon}\right| = \epsilon,$$

which precisely gives uniform convergence of $f_n \to f$ on [0, 1].

(3) Now we claim $f_n \not\to f$ on $[0, \infty)$. Given in the previous page, if $f_n \to f$ uniformly on $x \in [0, \infty)$, then we must have for all $x \in [0, \infty)$,

$$\lim_{n \to \infty} \sup\{|f(x) - f_n(x)| : x \in [0, \infty)\} = \lim_{n \to \infty} \sup\{\left|\frac{x}{n}\right| : x \in [0, \infty)\} = 0.$$

As given by Ross, "If $f - f_n$ is differentiable, we may use calculus to find these suprema," even though we never defined a derivative. Hence we proclaim that $f_n(x) := \frac{x}{n}$ is differentiable (with respect to x), with

$$f'_n(x) := \frac{1}{n} > 0, \forall x \in [0, \infty),$$

where the strict inequality gives (unclaimed) intuition that f_n is strictly increasing unboundedly with respect to x and hence does not converge uniformly on $[0, \infty)$. We (do not admit we are stuck and) investigate further (by scrapping this completely and starting with the definition of uniform convergence).

Suppose (for contradiction) that $f_n \to f$ uniformly on $[0, \infty)$. Then (by definition of uniform continuity), for each $\epsilon > 0$ there exists a number N such that for all $x \in [0, \infty)$ and n > N, $|f_n(x) - f(x)| < \epsilon$. We show this uniformity fails: fix N arbitrarily (large) and consider $\epsilon := 1$. Take $x_0 = 2n + 2 \in [0, \infty]$ and notice

$$|f_{N+1}(x_0) - f(x_0)| = \left|\frac{x_0}{N+1}\right| = \left|\frac{2N+2}{N+1}\right| = 2 \not< 1,$$

and hence $f_n := \frac{x}{n}$ cannot be uniformly convergent to f.

Problem 24.3. Repeat exercise 24.2 for $f_n := \frac{1}{1+x^n}$. That is, for $x \in [0, \infty)$,

- 1. Find $f(x) := \lim f_n(x)$.
- 2. Determine whether $f_n \to f$ uniformly on [0, 1].
- 3. Determine whether $f_n \to f$ uniformly on $[0, \infty)$.

Solution. (1) Considering case-work for $x \in [0, \infty)$, we claim the following point-wise convergence is self-evident:

$$f(x) := \lim_{n \to \infty} f_n(x) = \begin{cases} 1, & 0 \le x < 1\\ \frac{1}{2}, & x = 1\\ 0, & 1 < x \end{cases}$$

(2) Take $x \in [0,1]$. If x = 1, then $f_n(x) = f(x)$ for all n (if this is not obvious, we write $\frac{1}{1+1^n} = \frac{1}{2}$). If it is not obvious that this equality implies $|f(1) - f_n(1)| < \epsilon$ for any $\epsilon < 0$, we expicitly state so here. Now suppose $x \neq 1$, so that $x \in [0,1)$ and f(x) = 1. Fix $\epsilon > 0$ and take $N := \max\{42, \left|\frac{\log \epsilon}{\log x}\right|\}$. Then for $x \in [0,1)$ and n > N,

$$\left|\frac{1}{1+x^n} - 1\right| = \left|\frac{1}{1+x^n} - \frac{1+x^n}{1+x^n}\right| = \left|\frac{x^n}{1+x^n}\right| < \frac{x^n}{1} < x^{\frac{\log\epsilon}{\log x}} = x^{\log_x\epsilon} = \epsilon,$$

as required to conclude $f_n \to f$ uniformly on [0, 1].

(3) Now take $x \in [0, \infty)$. Splitting into cases involves identical arguments to (2) above, so we notice that in (2) we already proved uniform continuity for $[0,1] \subset [0,\infty)$. It only remains to show that $f_n \to f$ uniformly on $(1,\infty)$. From part (1) earlier, for x > 1, we have $f(x) = \lim f_n(x) = 0$. Take $x \in (1,\infty)$ and $\epsilon > 0$. Let $N := \max\{42, |\log_x(\frac{1}{\epsilon})|\}$. Then for all n > N and $x \in (1,\infty)$, we have:

$$|f_n(x) - f(x)| = \left|\frac{1}{1+x^n} - 0\right| < \left|\frac{1}{x^{\log_x(1/\epsilon)}}\right| = \frac{1}{1/\epsilon} = \epsilon,$$

as required to show $f_n \to f$ uniformly on $(1, \infty)$. Because we have $f_n \to f$ uniformly on [0, 1] from part (2) above, we conclude $f_n \to f$ uniformly on $[0, \infty)$ which was to be shown.

Problem 25.5. Let (f_n) be a sequence of bounded functions on a set S, and suppose $f_n \to f$ uniformly on S. Prove f is a bounded function on S.

Solution. Because (f_n) is a sequence of bounded functions on set S, for $i \in \mathbb{N}$, let m_i be a bound for f_i , so that $|f_i(x)| < m_i$ for all $x \in S$. For each $n \in \mathbb{N}$, define $M_n := \max\{m_i : 1 \le i \le n\}$. Notice that M_n is a bound for all f_1, f_2, \ldots, f_n .

Fix some $\epsilon > 0$. Because $f_n \to f$ uniformly on S, fix some N where any $x \in S$ gives $|f(x) - f_{N+1}(x)| < \epsilon$. Then M_{N+1} is a bound for all $f_1, f_2, \ldots, f_{N+1}$. Further, notice:

$$|f(x) - f_{N+1}(x)| < \epsilon \iff f_{N+1}(x) - \epsilon < f(x) < f_{N+1}(x) + \epsilon \implies |f(x)| < f_{N+1}(x) + \epsilon \le M_n + \epsilon$$

so we conclude that f is a bounded function on S as we have shown that for all $x \in S$, $|f(x)| < M_n + \epsilon$.

Definition: Uniformly Cauchy -

Sequence (f_n) is **uniformly Cauchy** if $\forall_{\epsilon>0} \exists_N : \forall_{x \in S} \forall_{m,n>N}, \qquad |f_n(x) - f_m(x)| < \epsilon.$

Theorem 0.3. Uniformly Cauchy (f_n) implies $f_n \to f$ uniformly on S (there exists some such f).

Theorem 0.4. If $\sum_{k=0}^{\infty} g_k$ is uniformly Cauchy on S, then the series converges uniformly on S.

Theorem 0.5. Consider a series $\sum_{k=0}^{\infty}$ of functions on $S \subset \mathbb{R}$. Suppose each g_k is continuous on S and the series converges uniformly on S. Then the series $\sum_{k=0}^{\infty} g_k$ represents a continuous function on S. Informally, I say 'the (infinite) sum of commonly uniformly convergent functions is continuous'.

Theorem 0.6. Weierstrass M-test. Let (M_k) be a sequence of **nonnegative** real numbers where $\sum M_k < \infty$. If $|g_k(x)| \le M_k$ for all $x \in S$, then $\sum g_k$ converges uniformly on S.

Problem 25.6.

- 1. Show that if $\sum_{n=1}^{\infty} |a_k| < \infty$, then $\sum_{k=1}^{\infty} a_k x^k$ converges uniformly on [-1, 1] to a continuous function. 2. Does $\sum_{n=1}^{\infty} \frac{1}{n^2} x^n$ represent a continuous function on [-1, 1]?

Solution. (1) Suppose $\sum |a_k| = M < \infty$, so that $|a_k| < M_k$ for all $k \in \mathbb{N}$ and $(M_k) \to M$. Then $(|a_k|)$ is a sequence of nonnegative real numbers where $\sum |a_k| < \infty$ (given). By the Weierstrass *M*-test, we conclude $\sum a_k x^k$ converges uniformly to some function f on [-1, 1]. It remains to show f is continuous.

Notice that for all $x \in [-1,1]$, we have $\sum a_k x^k \leq |a_k| < M_k$ for all k, and the partial sums of $\sum a_k x^k$ are polynomials so are continuous on [-1,1]. Hence by the theorem that states that the infinite sum of commonly uniformly converging continuous functions is continuous (theorem 0.5 on the previous page), we conclude $f := \sum a_k x^k$ is continuous, and we are done.

(2) Because $\sum \left|\frac{1}{n^2}\right|$ is a known convergent sequence (if this is imprecise, we cite p = 2 test), invoking part (1) above directly shows that indeed yes, $\sum_{n=1}^{\infty} \frac{1}{n^2} x^n$ represents a continuous function on [-1, 1].

Problem 25.7. Show $\sum_{n=1}^{\infty} \frac{1}{n^2} \cos nx$ converges uniformly on \mathbb{R} to a continuous function.

Solution. Assuming we do not know the series expansion of $\cos(nx)$ (and thus do not invoke the above result), we (ab)use another property of $\cos x$, we know that $|\cos(nx)| \leq 1$ for all $n, x \in \mathbb{R}$, so take

$$f_n(x) := \frac{1}{n^2} \cos(nx),$$

so that

$$|f_n(x)| \le |n^{-2}| \le 1, \quad \forall_{x \in \mathbb{R}, n \in \mathbb{N}}.$$

Because $\sum \frac{1}{n^2}$ converges (via p = 2 test), we conclude that the Weierstrass *M*-test gives our desired result: $\sum f_n = \sum \frac{1}{n^2} f_n$ $\sum_{n=1}^{\infty} \frac{1}{n^2} \cos nx$ converges uniformly on \mathbb{R} . Notice we do not claim the function to which this converges, although this can be reasoned by pointwise convergence and periodicity.

Theorem 0.7. Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series with R > 0 (possibly $+\infty$). If $0 < R_1 < R$, then the power series converges uniformly on $[-R_1, R_1]$ to a continuous function.

Theorem 0.8. Let $f(x) := \sum_{n=0}^{\infty} a_n x^n$ have radius of convergence R > 0. Then f is differentiable on (-R, R), and

$$f'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}, \qquad |x| < F$$

Theorem 0.9. Abel's Theorem. Let $f(x) := \sum_{n=0}^{\infty} a_n x^n$ be a power series with finite positive radius of convergence R. If the series converges at x = R, then f is continuous at x = R. If the series converges at x = -R, then f is continuous at x = -R.

Problem 26.2.

- 1. Observe $\sum_{n=1}^{\infty} nx^n = \frac{x}{(1-x)^2}$ for |x| < 1; see Example 1 [page 211 in the book]. 2. Evaluate $\sum_{n=1}^{\infty} \frac{n}{2^n}$. Compare with Exercise 14.13(d). 3. Evaluate $\sum_{n=1}^{\infty} \frac{n}{3^n}$ and $\sum_{n=1}^{\infty} \frac{(-1)^n n}{3^n}$.

For part (2), we include Exercise 14.13(d), which builds on Exercise 14.13(c), which uses a fact generalized from Exercise 14.13(b). (c) Prove $\sum_{n=1}^{\infty} \frac{n-1}{2^{n+1}} = \frac{1}{2}$; hint: $\frac{k-1}{2^{k+1}} = \frac{k}{2^k} - \frac{k+1}{2^{k+1}}$. (d) Use (c) to calculate $\sum_{n=1}^{\infty} \frac{n}{2^n}$.

Solution. (1) This identity is a neat consequence of infinite series, where the differentiation operator would otherwise drop a degree for a finite-degree polynomial. Consider the canonical geometric series, where we have:

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + \dots$$

Taking the derivative of both sides yields:

$$-(1-x)^{-2}(-1) = 1 + 2x + 3x^2 + \dots + (n+1)x^n + \dots$$

and multiplying across by x gives:

$$\frac{x}{(1-x)^2} = x + 2x^2 + 3x^3 + \dots = \sum_{n=1}^{\infty} nx^n,$$

where the series index starts from 1 (which is as we wished to show).

(2) Now we evaluate $\sum_{n=1}^{\infty}$ by setting x := 1/2 in the expression from (1) above. That is,

$$\sum_{n=1}^{\infty} \frac{n}{2^n} = \sum_{n=1}^{\infty} nx^n |_{x=1/2} = \frac{1/2}{(1-1/2)^2} = \boxed{2}$$

(3) Similarly, we simply set $x := \frac{1}{3}$ and $x := \frac{-1}{3}$ into our expression in (1) to get our desired results:

$$\sum_{n=1}^{\infty} \frac{n}{3^n} = \sum_{n=1}^{\infty} nx^n |_{x:=1/3} = \frac{1/3}{(1-1/3)^2} = \frac{1/3}{4/9} = \boxed{\frac{3}{4}}$$
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{3^n} = \sum_{n=1}^{\infty} nx^n |_{x:=-1/3} = \frac{(-1/3)}{(1+1/3)^2} = \frac{-1/3}{16/9} = \boxed{\frac{-3}{16}}$$

Problem 26.3.

- 1. Use Exercise 26.2 to derive an explicit formula for $\sum_{n=1}^{\infty} n^2 x^n$. 2. Evaluate $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ and $\sum_{n=1}^{\infty} \frac{n^2}{3^n}$.

Solution. (1) From the above, we derived (and actually were simply informed) that:

$$\sum_{n=1}^{\infty} nx^n = x + 2x^2 + 3x^3 + \dots = \frac{x}{(1-x)^2}, \qquad \forall_{x \in \mathbb{R}: |x| < 1}$$

Taking the derivative (with respect to x) across the equations yields:

$$x'\left(\frac{1}{(1-x)^2}\right) + x\left[(1-x)^{-2}\right]' = 1 + 2^2x + 3^2x^2 + 4^2x^3 + \dots = \sum_{n=1}^{\infty} n^2x^{n-1}$$

Multiplying across by x and simplifying the LHS gives:

$$x\left[\frac{1}{(1-x)^2} + \frac{(-2)(-1)x}{(1-x)^3}\right] = \sum_{n=1}^{\infty} n^2 x^n$$
$$= \frac{x(1-x) + 2x}{(1-x)^3} = \frac{x - x^2 + 2x^2}{(1-x)^3} = \boxed{\frac{x^2 + x}{(1-x)^3}}.$$

(2) Now we use this expression to evaluate $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ and $\sum_{n=1}^{\infty} \frac{n^2}{3^n}$. Setting x := 1/2 gives:

$$\sum_{n=1}^{\infty} n^2 x^n |_{x=1/2} = \sum_{n=1}^{\infty} \frac{n^2}{2^n} = \frac{(1/2)^2 + (1/2)}{(1/2)^3} = \frac{3/4}{1/8} = \boxed{6},$$

and setting x := 1/3 gives:

$$\sum_{n=1}^{\infty} n^2 x^n |_{x=1/3} = \sum_{n=1}^{\infty} \frac{n^2}{3^n} = \frac{(1/3)^2 + (1/3)}{(2/3)^3} = \frac{4/9}{8/27} = \boxed{\frac{3}{2}}.$$

Problem 26.7. Let f(x) = |x| for $x \in \mathbb{R}$. Is there a power series $\sum a_n x^n$ such that $f(x) = \sum_{n=0}^{\infty} a_n x^n$ for all x? Discuss. [Max's note: you should even think about whether there is a power series representing f on any interval around 0 whatsoever].

Solution. This function is a canonical example of a 'simple' continuous function but not differentiable (at x = 0). Because f(x) := |x| is not differentiable at x = 0, f(x) = |x| cannot be represented by a power series $\sum_{n=0}^{\infty} a_n x^n$. Because any radius of convergence for a power series (as our first theorem in Ross dictates) must include its center (in this case 0) and some radius R > 0, we conclude that there is no power series with this desired property. To be precise, there is no poower series $\sum a_n x^n$ with the property that $f(x) = \sum_{n=0}^{\infty} a_n x^n$ for all x. Another nice example is given in Ross on Page 204:

Example 3

Let g be the function drawn in Fig. 25.1, and let $g_n(x) = g(4^n x)$ for all $x \in \mathbb{R}$. Then $\sum_{n=0}^{\infty} (\frac{3}{4})^n g_n(x)$ is a series of functions. The limit function f is continuous on \mathbb{R} , but has the amazing property that it is not differentiable at any point! The proof of the nondifferentiability of f is somewhat delicate; see [62, 7.18]. A similar example is given in Example 38.1 on page 348. \Box